CoffeeCan. java

This is an 00 version of the "Coffee Can" problem first suggested by
David Gries in _The Science of Programming_ page 165:

"A coffee can contains some black beans and white beans. The
following process is repeated as long as possible:

Randomly select two beans from the can. If they have the same color,
throw them out, but put another black bean in. (Enough extra black beans
are available to do this.) If they are of different colors, place the
white one back in the can and throw the black one away.

Execution of this process reduces the number of beans in the can by one.
Repetition of this process must terminate with exactly one bean in the
can, for then two beans cannot be selected. The question is: what, if
anything, can be said about the color of the final bean based on the
number of white beans and the number of black beans initially in the can?”

The class has an invariant which is partially given below. Discovering the
rest of the invariant is the key to answering the question.

Each method is documented with preconditions and postconditions. To avoid
saying the same thing twice, information in the @param tags should be
considered part of the precondition, and information in the @return tags
should be considered part of the postcondition.

Copyright (c) 2000 - Russell C. Bjork

import java.io.*;

/** Representation for Gries' coffee can.
*

* Tnvariant: there is at least one bean in the can and

* the number of beans of each color is >= @ and
* 72777

*/

public class CoffeeCan

{

/** Main program. Repeatedly ask user for maximum number of beans of each
* color in can, and then play one instance of the "coffee can" game,

* reporting activity to System.out. Stop when max = 0.
*
* NOTE: By entering a negative value, the user can cause the precondition
* of the constructor to be violated. What happens in this case?
*/
public static void main(String [] args) throws IOException
{

BufferedReader input = new BufferedReader(new InputStreamReader(System.in));

System.out.print("Maximum number of beans of each color: ");
int max = Integer.parseIlnt(input.readLine());
while (max !'= 0)
{
// Play one game

CoffeeCan theCan = new CoffeeCan(max);
String initialContents = theCan.reportContents();
System.out.println("Initial contents: " + initialContents);

1

}

}

while (theCan.numberOfBeans() > 1)

{

}

System.out.println();
try
{

}
catch (InterruptedException e)

{3}

String roundResults = theCan.playOneRound();
System.out.println("Results of round: " + roundResults);

Thread.sleep (5 * 1000);

String currentContents = theCan.reportContents();
System.out.println("Current contents: " + currentContents);

String finalColor = theCan.lastBeanColor();

System.out.println("Color of the final bean 1is

+ finalColor);

System.out.printlnQ);

// Ask user for parameters for next game, or @ to quit

System.out.print("Maximum number of beans of each color - @ to quit:

max = Integer.parseInt(input.readlLine());

System.exit(0);

/** Constructor

*
*
*
*
*
*
*
*

*/

Precondition: max >= 1

@param max maximum number of beans of each color that can

initially be in the can

Postconditions: can contains between 1 and max white beans and

between 1 and max black beans.

public CoffeeCan(int max)

{

}

whiteBeans

(int) (1 + max * Math.random());

blackBeans = (int) (1 + max * Math.random());

/** Report current contents of the can

¥ ¥ ¥ ¥ ¥

*/

Preconditions: none
Postcondition: can contents are unchanged

@return string describing the current contents of the can

public String reportContents()

{

return "Can contains:
white beans and " + blackBeans + " black beans - total = " +

"

+ whiteBeans +

(whiteBeans + blackBeans);

"J;

/** Report number of beans currently in the can

*

¥ ¥ ¥ ¥

*/

Preconditions: none
Postconditions: can contents are unchanged

@return total number of beans in can

public int numberOfBeans()

{
b

/** Play one round of the "coffee can" game.

*

¥ ¥ ¥ ¥ ¥ ¥

*/

return whiteBeans + blackBeans;

one back, as described by the rules above.

Precondition: there is more than one bean in the can
Postcondition: the number of beans in the can is reduced by 1, in
accordance with the rules of the game

@return string describing what took place

public String playOneRound()

{

String first = chooseBean();
if (first.equals("White™"))
whiteBeans --;
else
blackBeans --;

String second = chooseBean();
if (second.equals("White™))
whiteBeans --;
else
blackBeans --;

String putBack;
if (first.equals(second))

{
putBack = "Black";
blackBeans ++;

i

else

{
putBack = "White";
whiteBeans ++;

i

+ first + ", + second +

return "Drew:

Put back:

Draw two beans and put

+ putBack;

/** Choose a single bean to draw
*

* Preconditions: there is at least one bean in the can
*
* Postconditions: Return value is either "White" or "Black",
* and there is at least one bean in the can of that color
*
* @return color of bean to draw
*
*/
private String chooseBean()
{
if (whiteBeans > 0 && blackBeans > 0)
if (Math.random() < 0.5)
return "White";
else
return "Black";
else if (whiteBeans > 0)
return "White";
else // must be the case that blackBeans > @
return "Black";
3
/** Report the color of the final bean
*
* Preconditions: the can contains exactly one bean
*
* Postcondition: can contents are unchanged
*
* @return color of the one bean in the can
*
*/
public String lastBeanColor()
{
if (whiteBeans == 1)
return "White";
else // must be that blackBeans == 1
return "Black";
3

// Number of beans of each kind currently in the can

private int whiteBeans;
private int blackBeans;

