
CS122 Lecture: Requirements Engineering

last revised January 2, 2019
Objectives:

1. To understand the importance of Requirements Analysis in the overall
software development process

2. To understand the distinction between functional and non-functional requirements

Materials:

1. Projectable of book figures 2-4, 2-5
2. Projectable of book figure 2-6.
3. Quick Check Questions from book and answers
4. Projectable of Categories of Requirements
5. Requirements activity
6. Projectable of Tree Swing

I. Introduction

A.As we pointed out a while ago, there are many different processes that can be
followed in software development (e.g. waterfall life cycle, RUP, etc).

B. Regardless of what process is followed, however, certain tasks will need to
be done as part of the development process per se - whether all at once,
iteratively, or incrementally. In fact, activities like these will be part of any
situation in which one uses his/her professional skills to help solve someone
else’s problem - not just when creating software or even in a computer field.

1. Establishing Requirements: The goal of this is to spell out what
constitutes a satisfactory solution to the problem.

2. Analysis. The goal of this is to understand the problem. The key
question is “What?”.

3. Design. The goal of this is to develop the overall structure of a solution to
the problem in terms of individual, buildable components and their
relationships to one another. The key question is “How?”.

�1

4. Implementation. The goal of this task is to actually build the
system as designed.

5. Installation / Maintenance / Retirement  
 

All of these must be done in a context of commitment to Quality
Assurance - ensuring that the individual components and the
system as a whole do what they are supposed to do (which may
involve identifying their shortcomings and fixing them.)

C. Today’s focus is the first of these: establishing requirements -
sometimes called requirements engineering. The question that is
answered is “how will I know that I have found a satisfactory solution
to the problem - i.e. what must characterize an acceptable solution?
Though we will discuss the specific context of software development,
establishing requirements is part of any design process.  
 

Example: When Gordon built this building we are in, the design of the
building was based on input garnered from science division faculty
and others affected by the building (e.g. the registrar had some input
regarding classroom space). Quite a lot of time and effort went into
figuring out what was needed, because a suitable building would have
to incorporate space for various purposes.

D.What were the specific stages of requirements engineering the book
discussed? (This is Quick Check Question a) What is the purpose of each?  
 

ASK

1. Requirements elicitation - gathering information

2. Requirements specification - putting the information into an
ordered form

3. Requirements validation - checking to be sure the requirements are
consistent and complete

�2

II. Requirements Elicitation

A.Since the book discussed this extensively, we will spend only limited
time on it. What were some of the requirements elicitation techniques
the book discussed? 
 

ASK

1. Interviews with key people. Who might this include? (Think back
to the notion of a stakeholder)

a) Potential users of the system

b) The client

2. Questionnaires

3. Studying documents

4. Observing the existing system (if there is one)

B. Quick-Check Questions / Exercises

1. What documents should be produced by the developer before and
after an interview with a client or user of the system? (QC b)  
 

ASK

a) Interview plan

b) An interview summary (reviewed with interviewee)  

2. When are questionnaires useful? (QC c)  
 

ASK  
 

When a small amount of information is needed from a large number of
people whom it is not practical to interview individually.  

�3

3. What is a scenario? (QC d)  
 

ASK  
 

A narrative of a typical instance of fulfilling a given requirement

a) Examples in the book - figure 2-4, 2-5 (pages 30, 31)  
 

PROJECT

b) Scenarios serve as a bridge to the development of use cases -
our next major topic

4. [As time permits] Exercise 2.5 p. 38 - do in pairs  

III.Requirements Specification

A.Having gathered general information about a particular project, it is
important to document the information.

B. Sometimes, this is done fairly informally.  

1. This may take the form of a simple statement of the problem that is
to be solved - a problem definition. (This is true for any problem
solving process - not just with regard to software).  
 

Example: For the “Wheels” case study in the book, a problem
definition appears as figure 2.6 (page 32) in the book.  
 

PROJECT Figure 2.6 
 

Note: often, it is helpful to see if one can capture the gist of such a
statement in 1-2 sentences.  
 

Exercise: do this for the “Wheels” system.

2. Quick check question e: What are the typical sections of a problem
definition? 
 

ASK  
 

cf figure 2.6 on page 32 - PROJECT  

�4

C. Sometimes, a specification is more formal.

1. In contract projects, the requirements specification document often
becomes explicitly or implicitly a part of the formal contract
between the developer and the client - i.e. the developer gets paid
for developing a system that fulfills the specifications.

2. As part of a formal specification of requirements, it is common to
give each requirement a number. This is done to facilitate
traceability: i.e. checking that no requirements are inadvertently
lost sight of during development, and that capabilities which are
not required do not inadvertently creep into the system.

D.Whether specifications are informal or formal, one issue that needs to
be made very clear at this point is the scope of the system - i.e. what is
part of the system and what is not? (Again, this is part of identifying
requirements in general, not just with regard to software).  
 

Example: the Science Building includes some classroom space in
addition to office and laboratory space for the sciences; but it does not
include administration office space (though such space is needed).
That is, science faculty office space, laboratories, and classroom space
are part of the scope of the project; administration office space is not.

1. Often, identifying the scope for a system can be done by listing all
the sorts of things the system might do, then narrowing the list -
recognizing that some areas rightly belong to a different project.

2. Often, the scope of a system is incorporated into the problem
definition statement we just discussed.  
 

Example: Problem definition for “Wheels” system - Note how
section on scope explicitly states what is included and what is
excluded.. (This is also implicit in the rest of the statement).

3. Exercise: consider the development of a software system for use by
a car-rental agency. (Do on board)

�5

a) What are some things that might be part of such a system?  
 

ASK

b) Now let’s narrow the scope 
 

ASK

E. At this point, it is also useful to recognize that requirements fall into
two broad categories:  
 

PROJECT

1. Functional requirements are concerned with what functionality that
system must provide - i.e. what a user of the software must be able to do.

2. Non-functional requirements are other requirements that a
satisfactory solution must satisfy. These can be just as important as
functional requirements; for this reason, sometimes this category is
fleshed out as

a) Quality requirements.

(1)Speed: For software, two measures of speed can be
important:

(a)Response time - the time needed to respond to an
individual request.

(b)Throughput - the volume of requests that can be handled in
a unit of time.  
 

Example: for a web system, response time is measured in
terms of the time between a user clicking on a link and the
user seeing the actual page; throughput is measured in
terms of how many users can be accessing the site at the
same time. (Note that inadequate throughput capacity can
show up as a response time problem under heavy load).

�6

(2)Security - often a major issue with software systems:

(a)Transmission of information over a network (e.g. the use
of encryption; https vs http)

(b)Break-ins to databases (e,g, theft of credit card numbers
stored in databases is a recurring problem)

(3)Reliability - often measured in terms of mean time between
failures (MTBF) - where “failure” is not limited to a system
crash, but includes anything which interferes with a user
getting work done.

(4)Recovery time after a failure - e.g. if a failure typically
necessitates at system reboot that takes 10 minutes, then the
recovery time is 10 minutes.

(5)Availability - a related issue. It is measured in terms of the
percentage of the time a system is available for use, after
recovering from failures and anything else that makes the
system unavailable.  
 

Example: suppose a certain system has a MTBF of 100 hours;
that recovery from a failure (involving a reboot) takes on the
average ten minutes, and that one hour every week the system
must be taken off line for backup. Then availability is  
 

5990 minutes / 6000 (ten minutes lost to reboot every 100
hours) - one hour / 168 hours = 99.83 % - .6% = 99.2%

(6)Resource utilization -

(a)Historically, storage requirements (RAM and/or disk)
have been important considerations. As prices for
memory and mass storage have plummeted, storage
utilization has become a minor issue for some systems;
however, it can still be a major issue for embedded
systems or devices like cell phones.

�7

(b)For embedded systems and devices like cell phones and
other mobile devices, power consumption is often the key
issue. While one tends to thing of power consumption as
a hardware issue, software has an impact as well - e.g.
systems consume more power when they are actively
computing or accessing disk; interestingly, even GUI
features such as scrollbars can impact power
consumption!

(7)Provision for maintenance and/or re-use

b) Platform requirements - having to do with the environment in
which the software can operate (computing platform, peripheral
devices, etc.)

c) Process requirements - including cost and delivery date as well
as development process.

3. In addition to thinking about functional requirements and various
kinds of non-functional requirements, one must also be aware of
the possibility of spurious requirements - e.g. things that shouldn’t
be considered a requirement at all, since they do not help to
determine what constitutes an acceptable solution to a problem.  
 

Often, spurious requirements deal with matters of how the problem
is solved, rather than what a solution must be.  
 

Example: in most cases, a statement like “the software must be
written in Java” would be a spurious requirement (unless there
were some compelling reason why this requirement is necessary).

4. Do requirements classification activity. Have them work on in
pairs, then work through answers and rationale. Project
classification projectable while they are doing this.

F. Finally, it is important to recognize that cost considerations and/or conflicts
between requirements frequently result in a need to prioritize requirements.

�8

1. In general, it is often the case that not all of the requirements within
acceptable costs for the project.

a) Software projects always have a cost associated with them.
Though cost is not stated as a requirement, it is a very real
factor nonetheless.

(1)For custom software, this may be the actual amount that the
contractor bids for the project. [And if there are multiple
bidders and the bid is too high, someone else will win the bid.]

(2)For generic software, development cost impacts the final
cost of the product. [If a reasonable forecast of sales is N
units, then the development cost per unit is total cost / N,
which must be an acceptable fraction of anticipated revenue
per unit]

(3)For software developed internally, there is an associated cost
in terms of personnel and other resources. Though this may
not be stated explicitly in dollar terms, it is still very real.

b) Of course, this is not unique to software - it is true of any
project.  
 

For example, in the case of this building, desirable features had
to be adjusted due to cost considerations.

2. Moreover, it is often the case that various requirements conflict
with one another, so it is not possible to have all of them. (We call
these conflicting requirements).

a) Occasionally, functional requirements conflict.

b) More often, there can be a conflict between certain functional
requirements and non-functional requirements.

�9

c) Quite often, there are conflicts between non-functional requirements
that must be settled by deciding which are most important  
 

Examples of (b) and/or (c)?  
 

ASK  
 

Provision for certain functionality versus speed, security and/or size.  
 

Speed versus size 
 

Speed versus security  
 

Speed versus broad platform availability  
...

IV.Requirements Validation

A.The final stage of requirements engineering - and an absolutely crucial
one - is requirements validation. Here we are concerned with three
major issues:

1. Completeness

2. Correctness

3. Consistency  
 

(Note: some of the conflicts discussed above may actually be
caught at this point).

B. QC question g in book - then collect QC's

C. In reality, it is easy to miss requirements. Experience has shown,
however, that correcting missing or incorrect requirements becomes
increasingly expensive as development proceeds. So it is very
important to ensure that requirements are as complete, correct, and
consistent as possible from the outset.  
 
PROJECT Tree Swing Again

�10

