
CS221 Lecture: Java Database Connectivity (JDBC)

revised 10/20/14
Objectives:

1. To introduce using JDBC to access a SQL database

 Materials:

1. Projectable of registration system architecture.
2. JDBC Example program to demonstrate
3. JDBC Example handout

I. Introduction

A. Our discussion of SQL thus far has been generally applicable to any
system using a relational database - OO or otherwise.

B. We now want to consider how we might access a relational database
from within a Java program. Notice that this means that we are, in a
sense, using a mixed approach to system architecture:

1.The GUI and business logic will be strictly object-oriented.

2.The model will be a relational database.

3.We will use a "thick-client" approach

C. The overall architecture of such a system might look like this

PROJECT

1

Program
Database Server

Database

Program

Program

D. All access is through a database server running on some host system.

1. A given database server may contain any number of databases

2. Any number of programs running on the same system may access
the server at the same time.

3. In addition, any number of other systems may access the server
over the network at a given time.

4. The programs that are accessing the database may be written in
Java or any other language that the database server supports. It is
common to find that database servers allow many different
programming languages to be used to write programs that access
databases they serve.

E. Two approaches can be used to allow a Java program to access a
database server

1. One approach embeds sql statements in a Java program (so the
program contains a mixture of Java and sql). A special
preprocessor program is used to separate this into a sql module and
“pure” Java. The resultant program must be run either on the
system that contains the database server or a client version of the
database server.

a) We develop this approach in CPS352

b) We will not develop it here, because it is quite a bit more
complex (though the resultant program executes more
efficiently)

2. The approach we will develop here is called JDBC - which stands
for Java Database Connectivity.

2

a) A system that is accessing a Java database must have an
appropriate JDBC driver installed on it. A JDBC driver is a
software component that

(1)Supports a standardized Java API that lets Java programs
access it.. It knows how to communicate with the database
server (typically over a network) in whatever way the server
expects.

(2)This is an example of the bridge design pattern. The
purpose of a bridge is “to decouple an abstraction from its
implementation so that the two can vary independently”

b) A JDBC driver is specific to a particular database server. JDBC
drivers are often made available by the producer of the database
server, though this is not necessarily the case.

(1)The JDBC driver we will be using to access our MySQL
database in lab was not developed by the developers of
mysql, but rather by someone else.

(2)On the other hand, we also have a copy of IBM's database
system called db2 (which use for CPS352). It includes a
JDBC driver developed by IBM

c) Earlier JDBC drivers need to rely on “native” code running on
the same platform, and thus were platform-specific. More
recent “Type 3” and “Type 4” JDBC drivers are written entirely
in Java (and uses the facilities of java.net to actually
communicate with the database server.) As a result, any such
JDBC driver can be run on any platform that supports Java. (It
is specific to the server platform, but not to the client platform.)

3

F. To access a given database, a Java program must

1. Load the appropriate driver.

2. Establish a connection to it by contacting the server.

3. Issue SQL query and/or update statements

II. Basic JDBC Concepts

A. A preliminary note: JDBC has many capabilities. We will look only
at a small subset.

B. The notion of a connection is fundamental. A connection is an object
that implements the interface java.sql.Connection. It is created
when the connection to the database is established. Usually a program
does all of its accesses to the database through a single object. (An
exception would be if the program accessed more than one database -
each would need its own connection.)

C. To perform a query or update operation, one can ask the connection to
create a java.sql.Statement object. The statement object can then
be used to execute one or more queries and/or updates - after which it
should be closed.

1. Thus, code like the following will appear (where connection is the
connection object):
Statement statement = connection.createStatement();
-- use the statement object to perform one or more
 queries and/or updates
statement.close();

2. Two methods of statement are particularly important.

a) executeQuery() is used to execute a query operation. It
always returns a ResultSet object - which we will discuss
shortly.

4

b) executeUpdate() is used to execute an update. It always
returns an int, which is the number of rows affected by the
query. (Thus, one way to see if an update was successful is to
see if its result was non-zero.)

c) Both methods take a String parameter, which is the SQL query
or update to execute. Thus, if statement is a Statement object,
operations like this would be legal:

statement.executeQuery("select * from Book") or
statement.executeUpdate("delete from Borrower
where lastName = 'Aardvark'");

(The strings may be constants that are part of the text of the
program, or they may be created during execution just like any
other strings).

d) Both methods throw a java.sql.SQLException if there is any
syntax error in the SQL.

D. An object that implements the java.sql.ResultSet interface is
returned when one does a query. The reason for this is that, in
general, SQL queries can return any number of rows. The ResultSet
object is like an iterator, in that it has a next() method that can be
executed repeatedly to access successive rows. (However, the
methods are not identical to those for iterators.)

1. The next() method is used to advance to the next row. It returns a
boolean - true if there was a row to advance to, false if there was
not. (Thus, one can determine when one has seen all the results.)
An important point to note is that next() must be called once to
get to the first row of the results - failure at this point would
indicate an empty result set.

2. Individual columns of the current row are accessed by using
getXXX() methods of the ResultSet object.

5

a) The getString(int) method returns a single column as a
String. The parameter specifies what column is wanted. The
first column is considered column one - not zero. (Columns
are numbered in the order in which their names appear in the
select statement, or in the order in which they are defined in the
database if "*" is used.)

b) If the column is known to have an appropriate type, other
methods like getInt(int) or getDouble(int) or
getDate(int, Calendar) can be used to access the column -
but the method called must correspond to the type of the
column. (Any type of column can be returned as a String.)

III.An Example Program Using JDBC

A. To illustrate JDBC, we will use a program based on the Address Book
system we have used for examples. However, this program stores the
address book in a SQL database.

B. DEMO

1. Show database maintained by mysql on joshua

a) Log in to mySQL
b) use ADDRESS_BOOK;
c) select * from ABTABLE;

2. Run demo program - make some changes to address book

3. Show database maintained again - note how changes are reflected

C. Handout: Example JDBC Program. We've basically replaced the
AddressBook and Person classes (kept in memory) with the use of a
relational database on disk.

Important Note: For pedagogical reasons, the program prints each
SQL statement it sends to the database if the LOG_SQL constant is

6

defined to be true. This is not done in the “real world” - and shouldn't
be part of code you write in lab!

Change LOG_SQL in AddressBookController to true and recompile.

D. Walk through AddressBookController.java. Demonstrate each
method and discuss the SQL statement it generates.

1. Methods corresponding to the Add, Edit, Delete buttons in the GUI

a) Add: note how information to be added is generated at run time

b) Edit: now how desired person's name is used in the initial select
and later in the update, along with dynamically generated
content for the various fields. (We update everything, rather
than trying to figure out what has changed.)

c) Delete: note how person's name is used in the delete statement.
We could have used the returned result to know whether or not
the person we attempted to delete actually existed - though we
didn't in this case, since the gui presents us with a list of names
or people in the book, so we couldn't specify a nonexistent
person. (But we could if the user were allowed to type a name)

2. Sort methods - note how we let the database server do the sorting!
Note use of an instance variable in the controller to keep track of
the desired sort order.

3. Print method - added, since previously the AddressBook class
(which we have eliminated) defined a method for this

4. New method fillIn() used to create a list of names to be
displayed in the GUI. Note: if the address book were large (and
hence the list were long), it would probably be better to let the user
type a partial name and then create a list of matches - e.g. if the
user types A he gets Aardvark, Albatross, Ant etc.

7

