
CPS221 Lecture: Operating System Protection

last revised 9/5/12
Objectives

1. To explain the use of two CPU modes as the basis for protecting privileged
instructions and memory

2. To introduce basic protection facilities found in operating systems

I. CPU Modes

A. In our survey of operating system history we saw that the precursor of
today’s operating systems was the stacked job batch monitor. When
such a system was used, the input stream (card reader or tape) would
contain a series of user jobs, structured like this

1. The advent of stacked job monitors created some interesting problems
that called for additional hardware features

1

Layout of input tape

$JOB user id
$FORTRAN
FORTRAN source program
$LOAD
$RUN
data for program
$EOJ
$JOB user id
$LOAD application on disk
$RUN
data for program
$EOJ
$JOB user id
...

Primary Memory

Monitor
(Permanently
Resident)

Secondary Storage

System programs
(compilers, libraries,
etc.)

Application
program

2. Since a series of jobs would follow one another on the tape, it was
vital that one job not be able to do anything that would interfere
with the other jobs on the tape:

a) If one job - through error or maliciousness - damaged the
monitor, then the remaining jobs on the tape could be processed
incorrectly or not at all.

b) If one job contained an error it might not stop reading with its
own data, but might begin reading the control cards, program,
and data for the next job. Thus, when the monitor regained
control it would not see some or all of the next job.

c) A program might go into an infinite loop, blocking all
subsequent jobs.

d) These problems were solved by adding a feature to the CPU
architecture.

B. That feature was the concept of processor mode: a provision that, at
any given time, the CPU would be running in one of two different
modes.

1. The basic idea is this:

a) When the concept was first introduced, the two modes were
called “monitor” and “user”; but today it is more common to
call them “kernel” and “user”, and we will use these two terms.

b) The CPU mode is specified by a single bit in the CPU state.

c) When the CPU is running code that is part of the operating
system, it is in kernel mode; when it is running any other code,
it is in user mode. (We’ll talk about how mode switching is
accomplished shortly).

2

2. A stacked job batch monitor would use these two modes as
follows:

a) The monitor region of memory was made “off limits” when the
processor was in user mode. If the monitor resided in the lowest
memory addresses, a simple way to do this for a stacked job monitor
was with a “fence” register - addresses below the fence are
accessible (or at least alterable) only when in monitor mode. The
fence would be set so that the monitor could not be touched by a
program running in user mode. This solved the first problem.

b) To solve the second problem, it was required that all input and
output be done by the monitor, rather than by user programs, by
making IO instructions privileged - i.e. executable only in
kernel mode. (An attempt to execute one of these in user mode
would be treated as a fatal error terminating the program.)

This means that a user program had to transfer control to the
monitor whenever it wants IO done. The monitor could then
take steps to be sure that the IO operation is legitimate - e.g.
that the user is not attempting to read a control card belonging
to the next job (or worse yet to write to the job input tape!)

c) A timer was used to solve the third problem. The monitor would set it
to a suitable interval (often specified by the user on the first control
card in the job) before passing control to the user program. If the
timer ran out before the user program is finished, it interrupted the
CPU, causing transfer to a timer interrupt handler routine which is
part of the monitor. This routine would then terminate the offending
job with a suitable error dump and then advance the input tape to the
next job. (Of course, the instruction to set the timer was privileged!)

Note: In practice, especially on current machines, timers are often
implemented by a device that interrupts the CPU at regular intervals -
with a counter in the monitor memory that is decremented by 1 on
each interrupt. Timeout is deemed to occur when the counter reaches
0.

3

3. This marked the introduction of what has become a key concept in
operating system design: protection.

a) In a system that is shared in some way among multiple users, it
is necessary to protect each user from accidental or intentional
interference by others. (This is true whether the users access
the system one after another as on a stacked job batch system,
or at the same time as on a multiprogrammed system.)

b) The operating system (which has unlimited access to the
system) must be protected from damage by users. This is
mandatory on a multiple user system, but even desireable on a
one user system

(1)Example: Gordon's old PDP-8: during one programming
project we had a rash of accidental erasures of part of the
disk containing the operating system due to a bug that many
students seemed to share.

(2)Example: Software crashes due to errors in one piece of
software were quite common on early PC operating systems
such as earlier versions of Windows or pre OS-X
Macintoshes.

c) Protection typically requires some hardware facilities - e.g. a
two mode CPU with privileged instructions for IO and certain
other operations, and some form of memory partitioning.
There is thus a strong interaction between operating systems
and computer architecture.

d) Note that protection is not the same thing as security - though
the two are closely related:

4

(1)Protection is concerned with mechanisms that help to ensure
correct operation even in the face of erroneous or malicious
code.

(2)Security is concerned with taking measures to ensure that the
protection mechanisms are not bypassed (e.g. to obtain
access to information one is not authorized to see, or to alter
information illegitimately, or just to crash the system.)

4. In a multiprogrammed system, memory protection is achieved by
arranging for the tables used by the memory management unit to
only be writeable when the CPU is in kernel mode.

a) Thus, only the operating system is able to control the memory
mapping for user processes.

b) An easy way to do this is to have the mapping tables reside in a
region of memory that only the operating system can write.

C. But how is the CPU mode changed?

1. For the use of these two modes to achieve the desired result, it is
essential that we ensure that only code that is part of the operating
system be executed with the CPU in kernel mode. (When the
CPU is in user mode, it doesn’t matter what code it is executing,
since any instruction that could cause a violation of protection is
disallowed.)

a) The CPU’s instruction set will include some mechanism for
allowing the CPU, when in kernel mode, to change mode to
user.

b) How do we go the other way?

2. The key is the notion of an “interrupt” or “trap”.

5

a) The two terms “interrupt” and “trap” have distinct technical
meanings, but are handled similarly, and the one term interrupt
is often used collectively to cover both.

(1)An interrupt (in the narrow sense of the word) is an event
that is triggered by an external device - e.g. when an IO
operation to a device is complete, or when a hardware clock
“ticks”.

In the case of an IO interrupt, there is typically some process
in the waiting state that is waiting for the operation to
complete.

(2) A trap is a CPU event that is triggered by the program
currently running on the CPU. There are two sources for
traps.

(a) It may be the result of some kind of fault such as
executing an illegal instruction or attempting to access a
protected region of memory or an IO device.

(b) It may be deliberately triggered by a system call
instruction. All CPU architectures include some
instruction like this, which the hardware treats the same
way it treats an illegal instruction (thus initiating fault
processing), but the OS recognizes as a system call rather
than a fault.

b) Either sort of event is handled by the hardware in essentially the
same way:

(1)The CPU hardware saves minimal information about the
current state of the system - at least the program counter and
its current mode (user or kernel), and sometimes a bit of
other information. (Details vary from architecture to
architecture).

6

(2)The CPU hardware changes mode to kernel

(3)The CPU hardware starts executing appropriate OS code.

(a) On some hardware architectures, the code that is executed is
a dispatcher routine in the OS that analyzes the cause of the
interrupt/trap and passes control to the correct handler
routine in the OS. The CPU architecture specifies where
this handler must reside in memory, and the operating
system code is set up to ensure that the appropriate
dispatcher code resides there.

(b)On other architectures, this analysis is effectively done
by the hardware.

(c) In either case, the end result is that the CPU hardware
begins executing an appropriate “handler” routine in the
OS. There is one handler for each external device that
might cause an interrupt, and one handler for each
possible cause for a trap.

c) However, what the OS handler routine does depends on the
nature of the interrupt or trap.

(1) In the case of interrupts from an IO device, the typical
actions include:

(a) Changing the state of the process waiting for the IO
operation to complete from waiting to ready.

(b)Possibly initiating a new IO operation on the same
device, if there is one waiting. (On a shared device like a
disk, one process may request an operation while the
device is busy serving another process - in fact, there
may be a whole queue of pending requests for a device.)

7

(2)An internal clock “tick” may result in some process that was
waiting a specific period time becoming ready.

(3) In the case of traps resulting from a fault, one of the
following is done:

(a) Initiating appropriate exception processing in the process

(b)Terminating the offending process.

(4) In the case of a trap resulting from a request for a system
service:

(a) Prior to initiating the trap, the process will have placed
information about what it wants in some appropriate
place, as specified by the CPU architecture (typically in
registers or some specified region of memory).

(b)The system service handler will analyze this information
to determine what the process wants and to see if it is
legitimate. If it is legitimate, processing will be initiated
with the CPU in kernel mode; if it is not legitimate, the
request will be handled as if it were a fault.

d) In any case, after processing the interrupt or trap, the OS
handler will have to decide whether to resume running the
process that was running at the time the trap occurred, or to run
some other process - e.g. because a waiting process of higher
priority has just become ready, or because the running process
has requested an operation for which it must wait.

3. Thus, when code running in user mode needs to perform some
privileged operation (such as IO), it sets up parameters to describe
its request and then executes the architecture-specific system call
instruction. This causes a trap to OS code that runs in kernel
mode, which examines the request and performs it if appropriate.

8

D. The basic idea of a two mode CPU has continued to be a fundamental
part of most CPU architectures, with the operating system making use
of these modes to protect itself and user code. There are, however, a
few refinements that have been added.

1. An operating system may be structured in such a way as to have
only a portion of it actually running in kernel mode. The rationale
for this is that erroneous code running in kernel mode can do more
damage than erroneous code running in user mode, so it is safer to
minimize the danger by using user mode for functions that do not
require kernel mode privileges.

2. Some CPU architectures provide more than two modes (4 is
typical). In this case, the most privileged mode (kernel) is reserved
for those portions of the OS that need it, while the modes between
kernel and user mode are used for other portions of the OS and/or
for middleware.

II. Additional Protection Facilities

A. Operating systems typically protect a number of other resources

1. The right to access the system in the first place - typically by some
sort of login mechanism.

2. Access to various files .

a) Many operating systems use a model similar to that found in
traditional Unix., where a file is owned by a specific user, and
access rights are specified for the user who owns the file, for others
in the same group as the user who created the file, and for the
world at large.

9

(1) In Unix, the password file specifies a user id for each user.
When that user logs in, the user’s shell (and all processes it
creates) normally run with the permissions of that user id.

(2)The file /etc/group specifies various groups. The password
file specifies a primary group for each user, but a user may
be a member of other groups as specified by /etc/group.

(3)The unit of protection is the file, which may be

(a) An ordinary file

(b)A directory (containing a listing of other files)

(c) A “special file” representing an IO device or an area in
kernel memory

(4)Each file has a user and group owner - normally the user and
group who created it.

(5)Each file specifies access rights for its user owner, its group
owner, and everyone else.

(a) If a process is running under the user id of the file’s
owner, the owner access rights govern.

(b) If the process is running on behalf of a user who is a
member of the group owning the file - but not the user
owner - the group access rights govern

(c) In all other cases, the “other” access rights govern

(6)Access rights are specified separately for each category:

(a) Read access permitted - a process can read a file or list
the contents of a directory or read from an IO device or
memory

(b)Write access permitted - a process can write to a file or create or
delete files in a directory or write to an IO device or memory

10

(c) Execute permitted - a process can execute a binary file
(to which it also has read access) or perform operations
on a directory.

(Recall how you needed to do this with the shell scripts
you created in lab)

(7) It is also possible to set bits called “set user id” and “set group
id” on a binary executable program. In this case, the program
runs with the identity of the file’s owner user or group, and
therefore has that user/group’s access permissions.

b) Some operating systems (including Windows and newer
versions of Unix, including Linux), offer a model known as
access-control lists, which allows an owner to grant access to
specific users - a more flexible protection mechanism than the
simple user - group - others model of basic Unix.

3. Various management functions

a) Unix has a rather broad-brush approach to this. There is one
user (conventionally known as root or “superuser”) who is
allowed to do everything - shutdown the system, change
ownership or protection of files, etc.

(1)This can create a problem, because the only way to give a
user the privilege to perform some “system” operation is to
give them all privileges.

(2)However, it is possible to give a user the ability to run a
specific program with “system” privileges via the setuid
mechanism. (For example, /bin/ps does this to allow access
to the kernel’s process table.)

(3) In addition, running as the root user is dangerous, because a
typographical error ion a command can have disastrous
consequences since the system allows the root user to do
anything

11

Example: Barry Reinhold’s experience as a system manager

(4)For the latter reason, most Unix-like systems today use a
command called sudo which executes a single command
with superuser privileges. When first given, sudo requires
the user to enter a password; if used again within 5 minutes,
it doesn’t require a password again.

Most systems require that the user who executes sudo be a
listed in a file that specifies who is allowed to use sudo -

(On some Linux systems, the password required is that of
root; on many other systems (including Ubuntu and MacOS)
it is the password of a user who is declared to be a system
administrator in the list of user accounts.

b) On systems designed to use a graphical user interface, such as
Ubuntu or MacOS, management utilities may require the user
to enter the password of an administrator account before a
critical function is done. (What is actually happening behind
the scenes is effectively the same as what is done by sudo).

c) Other systems use a more fine-grained approach. For example,
recent versions of Windows have 35 distinct privileges which
can be assigned to an individual user at login. This allows the
use of the principle of minimum privilege - a user should be
given the privileges to do what the user needs to do, but nothing
more.

12

