CPS222 - DATA STRUCTURES AND ALGORITHMS
An Example of a Program Using Trees: A Simple Guessing Game

(This handout includes both C++ and Java versions)

N
*

GuessingGame.cc

This program plays a guessing game in which the user is asked a series

of yes/no questions about some unknown entity. Eventually, the program
makes a guess as to what the entity is. If the program's response is
wrong, the user is asked to supply a yes-no question that can distinguish
between the program's guess and the correct answer, and this information
is added to the program's knowledge base.

The program's internal knowledge base is represented as a binary decision
tree, in which internal nodes represent questions and external nodes
represent guesses. When the program guesses wrong, the external node
containing the guess is replaced by a new subtree containing the
user-supplied distinguishing question, the original guess, and the new
entity.

At program startup, the user is asked for the name of a data file that
contains the program's "knowledge", and at termination the user is given

the opportunity to save the updated knowledge base to a file. The first
line in the file describes the program's subject matter, and each subsequent
line in the file represents a single node in the tree. The first word on
the 1line is an integer indicating whether the node is an internal (question)
node (1) or an external (guess) node (@); this is followed by a single space;
then the remainder of the line is the question or guess, as the case may be.
The tree is stored in the file in preorder.

Before playing the game, an initial knowledge base file must be created
consisting of at least a subject on line 1 and one possible guess on
line 2.

¥ ¥

Copyright (c) 2001, 2003 - Russell C. BJork

*
N

#include <string>
#include <iostream>
#include <fstream>
using namespace std;

C++ version - page 1

class GuessingGame

{

1

public:

// Construct a guessing game instance by reading data from the
// specified file

GuessingGame(istream & file);

// Save a guessing game instance to a file

void saveTree(ostream & file) const;

// Play a round of the game - updating tree if final guess is wrong

void playGame();

// Destructor - delete all nodes in tree

~GuessingGame();

private:

string _subject; // Subject the game is about

// The game tree is composed of two kinds of nodes - question
// (internal) nodes and guess (leaf) nodes. The content of
// a question node is the question to ask; of a guess node,
// the answer to propose. A guess node can be turned into a
// auestion node when a guess fails

class Node;
Node * _root; // Root of the tree representing the game

// Recursive auxiliary for constructor

static Node * readTree(istream & file);

// Recursive auxiliary for saveTree

static void writeTree(ostream & file, Node * root);

// There is no good reason for copying or assigning an
// object of this class, so by making these private we
// prevent their inadvertent use and avoid needing to
// actually implement them

GuessingGame(const GuessingGame & rhs);
const GuessingGame & operator = (const GuessingGame & rhs);

C++ version - page 2

class GuessingGame: :Node

{

1

public:

// Constructor for a question node - needs question and
// subtrees to go into if answer is no or yes

Node(string question, Node * ifNo, Node * ifYes)
. _isQuestion(true), _contents(question), _lchild(ifNo), _rchild(ifYes)
{3}

// Constructor for a guess node - needs guess

Node(string guess)
: _isQuestion(false), _contents(guess), _lchild(NULL), _rchild(NULL)
{3

// Accessors for information stored in a node

bool isQuestion() const
{ return _isQuestion; }

string getQuestion() const
{ return _contents; }

Node * getNoBranch() const
{ return _lchild; }

Node * getYesBranch() const
{ return _rchild; }

string getGuess() const
{ return _contents; }

// Convert a guess node to a question node - needs question
// and subtrees to go into if answer is no or yes

void convertToQuestion(string question,
Node * ifNo, Node * ifYes)

{
_isQuestion = true;
_contents = question;
_lchild = ifNo;
_rchild = ifYes;

b

// The destructor recursively deletes any nodes pointed to
// by this node

~Node()

{
if (_isQuestion)
{

delete _lchild;
delete _rchild;

}

private:

bool _isQuestion;
string _contents;
Node * _lchild, * _rchild;

C++ version - page 3

GuessingGame: : GuessingGame(istream & file)

{
getline(file, _subject);
_root = readTree(file);

}

GuessingGame: :Node * GuessingGame::readTree(istream & file)

{

// Read the information for this node

bool isQuestion;

file >> isQuestion;

file.getQ); // Skip over single blank space
string contents;

getline(file, contents);

// Construct the node, reading subtrees recursively if needed

if (isQuestion)

{
Node * ifNo = readTree(file);
Node * ifYes = readTree(file);
return new Node(contents, ifNo, ifYes);
}
else
return new Node(contents);
}
void GuessingGame::saveTree(ostream & file) const
{
file << _subject << endl;
writeTree(file, _root);
}
void GuessingGame: :writeTree(ostream & file, Node * root)
{
file << root -> isQuestion() << " ";
if (root -> isQuestion())
{
file << root -> getQuestion() << endl;
writeTree(file, root -> getNoBranch());
writeTree(file, root -> getYesBranch());
}
else
file << root -> getGuess() << endl;
}

// Ask the user a yes-no question; return true if user answers yes, false if
// no; reprompt the user if the answer is not recognizable.
bool askYesNo(string question)
{
string answer;
do
{

// Ask the user the question, read answer, convert to all caps

cout << question << "7 ",
getline(cin, answer);
for (int 1 = 0; i < answer.length(); 1 ++)
if (islower(answer[i]))
answer[i] = toupper(answer[i]);

C++ version - page 4

const string YES = "YES";
const string NO = "NO";

// Check to see if answer was yes or no. If so, return appropriate
// value - else ask again.

if Canswer == YES.substr(@, answer.length()))
return true;

else if (answer == NO.substr(@, answer.length()))
return false;

else
cout << "Please answer yes or no" << endl;

}
while (true);
}
void GuessingGame: :playGame()
{
Node * current = _root;
cout << "Please think of a(n) " << _subject << endl;
if (! askYesNo("Are you thinking of a(n) " + _subject))
return;
while (current -> isQuestion())
{
if (askYesNo(Ccurrent -> getQuestion()))
current = current -> getYesBranch();
else
current = current -> getNoBranch();
}
if (! askYesNo("Is he/she/it " + current -> getGuess()))
{
// Guessed wrong - find out what user was thinking of
// and get a new question for future use.
string userAnswer, userQuestion;
cout << "Who/what were you thinking of? ";
getline(cin, userAnswer);
cout << "Please enter a yes/no question that would distinguish "
<< userAnswer << " from " << current -> getGuess() << endl;
getline(cin, userQuestion);
// Extend the tree appropriately
if (askYesNo("For " + userAnswer + " the answer would be™))
current -> convertToQuestion(userQuestion,
new Node(current -> getGuess()), new Node(userAnswer));
else
current -> convertToQuestion(userQuestion,
new Node(userAnswer), new Node(current -> getGuess()));
}
}
GuessingGame: : ~GuessingGame()
{
delete _root;
}

C++ version - page 5

// Main program
int main(int argc, char * argv [])

{
// Access file containing initial knowledge base
cout << "File to read the knowledge base from? ",
string filename;
getline(cin, filename);
ifstream knowledgeIn(filename.c_str());
if (! knowledgeln)
{
cerr << "Unable to open file" << endl;
return 0;
}
// Create the game
GuessingGame theGame(knowledgelIn);
knowledgeIn.close();
// Play the game as often as the user wants
do
{
theGame.playGame();
}
while (askYesNo("Would you like to play again"));
// Offer opportunity to save the knowledge base to a file
cout << "File to write the knowledge base to - blank for none? ";
getline(cin, filename);
if (filename.length() > @)
{
ofstream knowledgeOut(filename.c_str());
if (! knowledgeOut)
{
cerr << "Unable to open file" << endl;
return 0;
}
theGame . saveTree(knowledgeOut);
knowledgeOut.close();
}
}

C++ version - page 6

The same program, but in Java.

(For ease of comparison, this version is directly translated from the C++ version. If written from scratch in
Java, it might well use a GUI rather than a console interface, and might also use a slightly different
knowledge file format. This version works with the same knowledge files as the C++ version, t00.)

/*
* GQuessingGame. java
%

. REMAINDER OF PROLOGUE COMMENT SAME AS C++ - OMITTED TO CONSERVE PAPER
*/
import java.io.*;
/** An object of this class represents a guessing game. */

public class GuessingGame

{

/** Constructor
%
* @param file the file to read the game tree from
%
puglic GuessingGame(BufferedReader file) throws IOException
{ subject = file.readlLine();
root = readTree(file);

}

/** Save the (possibly modified) game tree to a file
%
* @param file the file to save the game tree to
%
puglic void saveTree(PrintWriter file) throws IOException
! file.println(subject);
writeTree(file, root);

3

/** Play an instance of the game, updating the tree if needed
*/

public void playGame() throws IOException

{

Node current = root;
System.out.println("Please think of a(n) " + subject);
if (! askYesNo("Are you thinking of a(n) " + subject))

return;

while (current.isQuestion())

{
if (askYesNo(Ccurrent.getQuestion()))
current = current.getYesBranch();
else
current = current.getNoBranch();
3

Java version - page 7

if (! askYesNo("Is he/she/it " + current.getGuess()))
{
// Guessed wrong - find out what user was thinking of
// and get a new question for future use.

String userAnswer, userQuestion;

System.out.print("Who/what were you thinking of? ");
userAnswer = consoleln.readlLine();
System.out.println(
"Please enter a yes/no question that would distinguish "
+ userAnswer + " from " + current.getGuess());
userQuestion = consoleln.readlLine();

// Extend the tree appropriately

if (askYesNo("For " + userAnswer + " the answer would be™))
current.convertToQuestion(userQuestion,
new Node(current.getGuess()), new Node(userAnswer));
else
current.convertToQuestion(userQuestion,
new Node(userAnswer), new Node(current.getGuess()));

}

/** Main program */

public static void main(String[] args) throws IOException

{
// Access file containing initial knowledge base
System.out.print("File to read the knowledge base from? ");
String filename;
filename = consoleln.readlLine();
BufferedReader knowledgeln =
new BufferedReader(new FileReader(filename));
// Create the game
GuessingGame theGame = new GuessingGame(knowledgeIn);
knowledgeIn.close();
// Play the game as often as the user wants
do
{
theGame.playGame(Q);
ks
while (askYesNo("Would you like to play again"));
// Offer opportunity to save the knowledge base to a file
System.out.print("File to write the knowledge base to - blank for none? ");
filename = consoleln.readLine();
if (filename.length() > @)
{
PrintWriter knowledgeOut = new PrintWriter(new FileWriter(filename));
theGame.saveTree(knowledgeOut);
knowledgeOut.close();
ks
System.exit(0);
b

Java version - page 8

/* Instance variables */

private String subject; // Subject the game is about
private Node root; // Root of internal knowledge tree
/* Private methods - auxiliary to public methods above */

/** Read a tree stored in preorder in a file

*

* @param file the file to read from
* @return root of resultant tree
*/

private static Node readTree(BufferedReader file) throws IOException
{

// Read the information for this node

boolean isQuestion = ((char) file.read() == '1");

file.skip(1); // Skip over single blank space

String contents = file.readlLine();

// Construct the node, reading subtrees recursively if needed

if (isQuestion)

{

Node ifNo = readTree(file);

Node ifYes = readTree(file);

return new Node(contents, ifNo, ifYes);
}
else

return new Node(contents);

/** Write a tree to a file in preorder
*

@param file the file to write to
@param root the root of the tree
*/

private static void writeTree(PrintWriter file, Node root) throws IOException
{

file.print(root.isQuestion() ? 1 : @);

file.print(" ");

if (root.isQuestion())

{
file.println(root.getQuestion());
writeTree(file, root.getNoBranch());
writeTree(file, root.getYesBranch());

}

else

file.println(root.getGuess());

Java version - page 9

/** Ask the user a yes-no question

*

* @param question the question to ask

* @returntrue if user answers yes, false if no

*

* (reprompt the user if the answer is not recognizable.)
*/

private static boolean askYesNo(String question) throws IOException
{

String answer;

do

{

// Ask the user the question, read answer, convert to all caps

System.out.print(question + "? ");
answer = consoleln.readlLine();

// Check to see if answer was yes or no. If so, return appropriate
// value - else ask again.

if (answer.equalsIgnoreCase("YES".substring(@, answer.length())))
return true;
else if (answer.equalsIgnoreCase("NO".substring(@, answer.length())))
return false;
else
System.out.println("Please answer yes or no");
}
while (true);
}
/* Wrap System.in in a BufferedReader object so we can use readlLine(),
* etc. on it.
*/

private static BufferedReader consoleln =
new BufferedReader(new InputStreamReader(System.in));

Java version - page 10

/** The game tree is composed of two kinds of nodes - question
(internal) nodes and guess (leaf) nodes. The content of
a question node is the question to ask; of a guess node,

the answer to propose.

A guess node can be turned into a

question node when a guess fails

*/

private static class Node

{

/** Constructor for a question node

@param question the

question to ask

@param ifNo the subtree to go into if user answers no
@param ifYes the subtree to go into if user answers yes

Node(String question, Node ifNo, Node ifYes)

*/
{
isQuestion = true;
contents = question;
this.lchild = ifNo;
this.rchild = ifYes;
3

/** Constructor for a guess node

*

* @param guess the guess to try

*/

Node(String guess)

{
isQuestion = false;
contents = guess;
1child = null;
rchild = null;

3

/** Accessor for whether a node represents a question or a guess

*

* @return true if a question, false if a guess

*/

boolean isQuestion()

{
3

return isQuestion;

/** Accessor for question stored in a node.
* Precondition: the node represents a question

*

* @return the question stored

*/

String getQuestion()
{

}

return contents;

Java version - page 11

/** Accessor for "no" branch from a question node.

* Precondition: the node represents a question
*

* @return root of the "no" branch

*/
Node getNoBranch()
{
return lchild;
}

/** Accessor for "yes" branch from a question node.

* Precondition: the node represents a question
*

* @return root of the "yes" branch

*/
Node getYesBranch()
{
return rchild;
}

/** Accessor for guess stored in a node.

* Precondition: the node represents a guess
*

* @return the guess stored
*/

String getGuess()
{

}

return contents;

/** Convert a guess node to a question node

* Precondition: the node currently represents a guess

*

* @param question the question to ask

* @param ifNo the subtree to go into if user answers no

* @param ifYes the subtree to go into if user answers yes
*/

void convertToQuestion(String question, Node ifNo, Node ifYes)
{

isQuestion = true;

contents = question;

1child = ifNo;

rchild = ifYes;
3

/* Instance variables of a Node */
private boolean isQuestion; // True for question, false for guess

private String contents; // Question or quess as the case may be
private Node 1child, rchild;// "No" and "Yes" branches for a question

Java version - page 12

