
CPS222 Lecture: Sets

last revised  April 16, 2015
Objectives:

1. To introduce representations for sets that can be used for various problems
a. Array or list of members
b. Map-based representation
c. Bit vectors
d. Union-Find structure

2. To introduce basic algorithms for working with sets
a. Merge-based algorithms for intersection, disjunction, difference
b. Union-Find

 Materials: 

1. Projectable of random maze creation example
2. Handout of union/find code from program that does this

I. Introduction

A. One issue that arises in many kinds of problems is the need to 
represent and work with a type of information that can be understood 
as a mathematical set - i.e. each potential element is present exactly 
once or not at all, and order is not important. 

1. The fundamental operation on a set is the contains test - does the 
set contain a specific element?

  
2. But other operations such as union, intersection, difference etc. are 

often important.

B. There are a variety of different ways of representing sets, with the 
choice depending on the nature of the information and how it is to be 
manipulated.
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1. A simple representation is to use a container such as an array or list 
that holds the set elements, which can, in this case, be of any type.

a) Example: the set { Aardvark, Buffalo, Cat, Dog, Elephant } 
might be represented by a sequence such as an array or list 
whose elements are the strings "Aardvark",  "Buffalo" etc.

b) Of course, this representation implicitly creates an order for the 
elements, but the order is generally regarded as unimportant

c) Of more concern is the fact that the contains() operation will involved 
iterating over all the elements in the set - which is O(set size)

2. Both the Java library  and the C++ STL incorporate set containers, 
which are actually implemented as maps, with each key simply 
being mapped to itself. 

a) As you recall, Java offers two implementations: HashSet and 
TreeSet,  which are actually realized by HashMap and TreeMap, 
respectively.  Of course, the latter does, in fact, keep elements in an 
order and thus requires that the element type support comparison 
(e.g. that it is something like an Integer or a String.)

b) C++ draw the same distinction, but the uses the name 
unordered_set for the version that uses hashing and reserves 
the name set for the version that maintains order (and hence 
must have an element type for which comparison is defined, 
either builtin by < or user-defined. 

c) Either representation makes a quick implementation of 
contains() easy (its just key lookup in the map, hence O(1) or 
O(log set size).

3. For representing sets whose elements are drawn from a fixed (and usually 
small) universe, a representation known as a bit vector can be used.
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a) Example: suppose we are interested in sets of letters of the 
alphabet - e.g. vowels = { A, E, I, O, U },  labial consonants 
(consonants made with the lips) = { B, F, M, P, V } etc.  In this 
case, our universe has 26 members.

b) To represent sets as a bit vector, we use a vector of bits equal in 
length to the size of the universe (e.g. a vector of 26 bits for 
letters of the alphabet), with one position explicitly 
corresponding to each element of the universe (e.g. the leftmost 
bit might represent A, the one next to it B ... the rightmost bit Z). 

The representation for a set has a 1 in a given position if the 
corresponding element is in the set, and 0 if it is not - e.g. the set 
vowels might be represented by the bit vector 
10001000100000100000100000.

c) This supports a fast implementation of contains - simply look to 
see if the bit corresponding to the desired value is set.

d) But, of course, this is limited to cases where the set of possible 
values is small and can easily be mapped to bit positions.

4. We will look at one more structure - the union-find structure - later.

II. Standard Set Operations

A. Many operations on sets make use of the standard set operations 
union, intersection, difference and - more rarely - negation (which is 
only meaningful if the set is based on a finite universe.)

Example: consider the search operations offered in many contexts.  
Operations such as and, or, and not map to set operations - e.g. the set 
of documents containing two different keywords is the intersection of 
the two sets of documents containing each keyword.

 
B. If the sets are represented as sequences or maps, one (computationally 

expensive) way to perform these operations would be to make use of 
the contains operation.
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1. Example: A ∩ B could be implemented as follows: iterate through 
the elements of set A.  For each element, test if B contains it, and 
include it in the result only if it does.

2. This approach could be as bad as O(n2 ) if the contains operation is 
implemented by iterating through all the elements of a set to see if 
it is there.  If a tree-based representation for sets is used, it would  
be O(n log n)), and if a hashtable is used for sets, it might be O(n), 
though possibly with a large constant of proportionality.

3. If some sort of ordered representation is used (a tree or if an array 
or list is kept in some order), a much faster implementation is 
possible based on merging.

a) What we do is iterate through both sets in order.  Let currentA 
be the current element from set A, and currentB the current 
element from set B.  If we have run out of elements in a set, let 
current for that set be a "manufactured" element that tests 
greater than any real element.  Then

while not past the end of both sets:
  if currentA == currentB :
    include the element in the result if the operation is union or 
        intersection, but not if it is difference
    advance to the next element in both sets
  else if currentA < currentB
    include currentA in the result if the operation is union or 
        difference, but not if it is intersection
    advance to the next element in set A only
  else (it must be that currentA > currentB)
    include currentB in the result if the operation is union, but 
       not if it is intersection or difference
    advance to the next element in set B only
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b) Example: calculate the intersection of { Aardvark, Buffalo, 
Zebra } and { Buffalo, Cat }

currentA is Aardvark
currentB is Buffalo
Since currentA < currentB,  advance to the next element in A, 
  (so currentA is now Buffalo)
Since currentA == currentB,  include Buffalo in the result and 
advance to the next element in both A and B.
  (so now currentA is Zebra and is currentB Cat) 
Since currentA > currentB,  advance to the next element in B, 
  (so currentB is now ∞) 
Since currentA < currentB,  advance to the next element in A, 
  (so currentA is now ∞)
Stop - result is { Buffalo }

c) Of course, this approach is O(n)

4. If the set is represented by a bit vector, basic set operations can be done 
even more efficiently by using  bitwise logical operations - e.g. set 
union is bitwise or; set intersection is bitwise and, set negation (possible 
with a finite universe) is bitwise complement, and difference is bitwise 
and with the complement.

Example: Represent the consonants and vowels by bit vectors; 
{ 01110111011111011111011111 and 1000100010000100000100010 }
show how to find letter than is both by set intersection.

III.Union-Find

A. One category of operations that shows up in a number of places is 
based on the notion of a partition of a set.  A partition is a set of 
subsets of the original set such that each element of the original set 
shows up in exactly one subset.

1. Example: create a partition of the class based on academic year
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2. Example: because of double majors, it would not be possible to 
create a partition of a class based on academic major (since some 
people would show up in two subsets) - though it would be 
possible if we used first major as the basis for partitioning.

 
B. For a partition, two operations are especially useful:

1. Find the partition a particular element belongs to.
2. Take the union of two subsets so that all the elements in either 

subset now belong to united subset.

C. An example where this is useful: suppose we wanted to randomly generate a 
solvable maze.  One way to do this would be to start with a maze structure 
in which all the possible walls were present, and then begin to remove walls 
at random until there was a path from start to finish.

1. Example.  Starting with the simple maze on the left - with start cell 
A , we can create the maze on the right by generating random 
number, using the assignment of numbers to walls shown in the 
middle, and removing walls until there is a path from start to finish.  
(The example required removal of walls numbered 4, 10, 21, 22, 
18, 9, 23, 11, 20, 13, 14 in that order.)
PROJECT

2. Of course, if one were to do this, one would need some way of 
testing, at each step, whether a path exists.
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a) A good way to do this would be to form a partition, with each 
cell initially in its own set.  Each time a wall is removed:

(1)Find the subset for each of the two cells that were separated 
by the wall.

(2) If the subsets differ, replace them by their union. 

(3) If the two cells were already in the same subset, and we 
don't want to have cycles in the maze, we can not remove 
the wall.

b) The result is that, at any time, each cell is in a set consisting of 
the cells that are reachable from it.

c) When both the start and the finish cells are in the same set, we 
can stop.

3. Can you think of another place where we have seen something similar?

ASK

In Kruskal's shortest path algorithm, we need to test when we're adding 
an edge to see whether it would create a cycle, which occurs if it joins 
two vertices that are part of the same connected component.

D. With the set representations we have considered thus far, the find 
operation is computationally expensive because we need to test each 
of the sets to see if the element in question is in it.  

1. A much faster solution arises if we represent sets by trees in which 
the pointers go the other way - i.e. each element node points to its 
parent, rather than the other way around.

a) We could have a special node to label the set, or we could just let 
one of the elements serve that purpose, with a pointer to itself.

Example:  The we could picture the cells after the removal of 
walls 4, 10, 21, 22 this way:
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A   B   C   D   F   G   I   J   K   L   M   O
|                   |               |   |
E                   H               P   N

Note that find now requires just one step.

b) If the element node in question has no parent, it is the name of 
the set; otherwise the name of the set is the node it points to.

Example: A belongs to set A; H belongs to set G.

2. To perform union, we can simply make one set a subset of the 
other by making the root of the subset point to the root of the other.  

a) Of course, if we do union this way we may have to iterate up a tree 
to find the root of a set - e.g. if we take the union of sets A and G, 
we would get
  A
 / \
E   G
    |
    H

H belongs to set A, but we had to iterate through G to find this out.  

b) A heuristic called union by size says to make the set containing 
the smaller number of elements the subset.  (This minimizes the 
need for iteration)

Example: our partition after removing all but the last 2 walls 
(13, 14), using union by size, is

    A   B   C   D   J   L
 / / \ \                |
E I   F K               P
 / \  |
M   O G
|     |
N     H

(1)Removing wall 13 has no effect, since it the cells it separates 
(G and K) are already part of the same group.
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(2)Removing wall 14 (which separates H and L) produces this result:

    A      B   C   D   J
 / / \ \ \      
E I   F K L 
 / \  |   |
M   O G   P
|     |
N     H

c) It is also possible to do path compression during iteration - so 
that all nodes we pass through are made direct children of the 
root.  If we did this, when we were done, set A would look like 
this

        A    
 / / / /\ \ \ \     
E I O F  G H K L 
  |            |
  M            P
  |     
  N 

This reduces - but does not eliminate - the need for iteration in 
the find operation. 

3. A program that uses this approach

a) DEMO

b) HANDOUT Union/Find code 
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