
CPS311 Lecture: Procedures Last revised 9/9/13

Objectives:

1. To introduce general issues that any architecture must address in terms of
 calling/returning from procedures, passing parameters (including the
 distinction between call by value and call by reference), getting return
 values, and preserving registers.
2. To introduce the notion of a procedure's stack frame
3. To discuss MIPS mechanisms for call/return, passing parameters, getting
 return values, and preserving registers.

Materials:

1. Example program
2. MIPS register conventions handout

I. Introduction
- ------------

 A. Any program of significant size is typically implemented as a collection
 of smaller units called by the name PROCEDURE or FUNCTION or METHOD.
 The idea, in any case, is to define a body of code that can be used
 from various other places in the program.

 (Note: in keeping with accepted practice, we will use the term procedure
 for such a body of code - even though different HLL's prefer
 different terms - e.g. the C language documentation typically uses
 the term function, while OO languages typically use the term method.)

 B. Consider the following fragment from a block of C++ code:

 class Person
 {
 private:

 ...
 int age;
 ...

 public:

 ...
 int getAge()
 {
 return age;
 }
 };

 int main()
 {
 ...
 Person p;
 ...
 cout << p.getAge();
 ...
 }

 In particular, consider the machine language translation of the
 definition of the getAge() method, and its subsequent call later in
 the program. In order for this call to be successful, a number of
 issues must be addressed:

 1. Saving a return point:

 The code in the main program will include a line that jumps to the
 code for getAge(), followed immediately by code to output the
 resulting integer value to cout - e.g.

 code to invoke getAge();
 code to output resulting integer value to cout

 This code must somehow let the code for getAge() know where execution
 is to resume once getAge() has done its job - i.e. at the code
 needed to output the value

 a. If a procedure were only used once in a program, this could be
 handled by having the _procedure_ "know" where it is to return.

 b. But since most procedures are used multiple times in a program,
 the caller must assume the burden of telling the procedure where to
 return to when it is done.

 2. Return value:

 The value looked up by getAge() must somehow be made available to
 the output code in the main program.

 3. Passing parameters:

 Even though the call to getAge() does not have any explicit parameters,
 it does have an implied parameter - the "this" parameter that points
 to the specific Person object whose age is being requested.

 C. All architectures provide support for these tasks, and at least one
 other that we haven't considered yet. This support may take the form
 of special provisions in the hardware, or may take the form of commonly
 adhered-to software conventions.

 We will look at the MIPS mechanisms, but our goal is not simply to
 understand how MIPS does these things, but also to understand the task
 itself. Where appropriate, I will also mention alternative approaches
 that other architectures use.

II. Stack Frames
-- ----- ------

 A. Before we discuss these issues in detail, we need to consider a concept
 that virtually all ISAs make some provision for - the stack frame for
 a procedure.

 B. A common software convention is to set aside a special region in memory
 ! called the STACK.
 !
 ! 1. As you recall, a stack is a data structure that grows and shrinks like
 ! a stack of cafeteria trays. Stacks obey a LIFO (last-in first-out)
 ! discipline.
 !
 ! 2. Typically, when a procedure is called a special data structure called
 ! its stack frame (or call frame) is allocated space on the stack. When
 ! it returns, this space is releaed.

 ! Note that procedure calls and returns obey a LIFO discipline - e.g.
 ! if A calls B and B calls C and C calls D, then D returns first, then
 ! C, then B.

 3. An important characteristic of the stack in most ISA's is that it
 GROWS TOWARD LOW ADDRESSES.

 a. That is, when the stack is initially created, it starts at the
 high end of memory.

 b. As it grows, it grows toward low memory.

 c. The reason for this is that there are two ways that the memory
 allocated to a program can increase as the program is running:

 i. Frames can be pushed on the stack - if procedure A calls B and
 B calls C, then frames for A, B, and C will be on the stack
 while C is executing.

' ii. Memory can be allocated by new(). The region from which this
 memory is allocated is called the HEAP (nothing to do with
 the heap data structure - the same term but different meaning)

 iii. To avoid these two mechanisms coming into conflict, each starts
 from one end of memory and grows toward the middle:

 Low memory addresses

 | PROGRAM CODE AND |
 | STATIC DATA |

 | HEAP (used for | | Direction of growth
 | new() requests) | v
 ////////////////////
 //////////////////// As-yet unallocated memory
 ////////////////////
 | STACK | ^
 | | | Direction of growth

 High memory addresses

 4. Most ISA's designate one or two registers to hold the address of
 the stack frame in memory.

 a. A STACK POINTER register to point to the current top of the
 stack.

 b. A FRAME POINTER register (not always used) to point to the
 base of the current stack frame. (This allows other items
 to be pushed on the stack after the frame is pushed, which
 will change the stack pointer but not the frame pointer.

 c. This leads to the following convention when a procedure is
 executing

 Low memory addresses

 | Stack frame for | $sp - points to "top" of stack
 | current procedure |
 | (saved registers |
 | and other values) | $fp - points to base of frame

 High memory addresses

 d. The MIPS convention is to use register $29 as the stack pointer
 (commonly referred to by the special name $sp) and to use register
 $30 as the frame pointer (commonly referred to by the special name
 $fp).

 i. Note that, in the MIPS ISA, these are software conventions.
 Actually, any general registers could be used for these purposes,
 along as all code agreed on the conventions. (Since we will be
 making use of the operating system and system libraries, we will
 need to adhere to these conventions!)

 ii. In contrast, some ISA's use special registers for the stack
 pointer and/or frame pointer, and these conventions are "wired
 in" to the hardware.

 C. The stack frame for a procedure may store some or all of the following:

 1. The return address in the caller to which the procedure is to return.

 2. The procedure's parameters.

 3. The values of other registers that the procedure uses, that need to
 be preserved if they are used elsewhere.

 4. Local variables:

 ! a. For efficiency reasons, local variables of a procedure are kept in
 ! registers where possible. However, there are a number of cases !
 ! where a local variable will be allocated space in the procedure's
 ! stack frame instead:

 i. The local is too big to fit in a register (e.g. it's an object
 or an array.)

 ii. The number of locals exceeds the number of available registers.

 iii. The local will be passed as a by-reference parameter to some
 other procedure (meaning it must have a memory address to pass.)

 b. When a local variable "lives" in the procedure's stack frame, its
 address can always calculated as some offset relative to the base
 address of the stack frame. Given that stack growth is toward low
 memory, this offset is generally negative.

 Example: Suppose we have a procedure which declares a local variable
 foo that is allocated space in its stack frame. Suppose,
 further, that other elements of the frame occupy a total of
 16 bytes ahead of it. Then while the procedure is
 executing the frame may look like this

 Low memory addresses

 | |
 | foo |
 16 bytes | | $fp

 High memory addresses

 The address of foo will be $fp-16, or - in mips notation - -16($fp)

III. Mechanisms for Supporting Procedure Calls
--- ---------- --- ---------- --------- -----

 A. Basic Procedure Calling Mechanisms

 1. All ISAs support some sort of procedure call instruction, which does
 two things:

 a. Save the return address - the address of the next instruction after
 it - in some ISA-defined location. Often, this is on the stack
 (i.e. the return address is pushed on the stack)

 b. Begin executing the first instruction of the procedure.

 2. In the MIPS architecture, the basic instruction for invoking a
 procedure is the JUMP AND LINK (jal) instruction.

 a. It looks very much like the ordinary jump instruction; in fact, it
 uses the same J-Format:

 # of bits 6 26

 field name op target address

 contents op = 3
 for jal

 b. The fundamental distinction between this instruction and the
 ordinary jump instruction (j) is that the CPU saves the address of
 the next instruction to be executed in register 31.

 i. That is, in the getAge() example we used earlier, the following
 code will occur in main:

 jal start of getAge()
 code to output resulting integer value to cout

 ii. When getAge() is being executed register 31 will contain the
 address of the code to output the integer value to cout. To
 return to this code upon completion, getAge() will end with the
 following instruction:

 jr $31

 which - as you recall - does a jump to the instruction whose
 address is contained in register 31. (This is, in fact, the
 chief use of the jr instruction.)

 c. Note that the use of register 31 for this purpose is a HARDWARE
 provision - the jal instruction always results in the address of
 the next instruction being placed in register 31. (The designers
 of MIPS made this choice to allow the maximum possible number
 of bits in the instruction format to be available for specifying
 the target address. If they had decided to let any register
 be used, not just register 31, they would have needed to set aside
 5 bits to specify a register number.)

 d. What MIPS does in this regard is actually a bit unusual - most
 ISAs save the return address on the stack. MIPS uses the
 convention it does for hardware simplicity, and relies on the
 called procedure to actually push the return address on the stack
 if this needs to be done (which isn't always the case).

 2. Most architectures specify that procedures that return a value to
 the caller place the value in a specific register. In the case of
 MIPS, the convention is to use register 2 for this purpose - if the
 return value is 32 bits or less - and to use registers 2 and 3
 together for a 64 bit return value.

 a. Thus, in the earlier example, getAge() will contain code like this:

 put age field of the person object in $2
 jr $31

 b. And the code in main will look like this

 jal start of code for getAge()
 output the value in $2 to cout

 c. Note that this is a SOFTWARE convention. Any register(s) could
 be used to return a value from procedure - but the common MIPS
 convention is to use $2 (and $3 if needed) for this purpose.

 (Each ISA typically uses a convention that is appropriate for the
 underlying register set).

 3. Parameter-passing actually involves two basic issues: WHAT is passed,
 and WHERE it is passed.

 a. In terms of WHAT, there are two basic answers that all ISAs
 ! support PASS BY VALUE and PASS BY REFERENCE.

 i. In pass by value, what is passed is the ACTUAL VALUE of the
 argument.

 ii. In pass by reference, what is passed is the ADDRESS IN MEMORY
 where the argument resides.

 Example: Given the following declaration:

 void foo(int a, int & b)
 ...
 And call

 int x;
 foo(3, x);

 And assuming that x is stored in memory location 1000, what is
 passed (on any ISA) is 3 and 1000, since a is passed by value, and
 b is passed by reference.

 ! ! b. In terms of WHERE parameters are passed, ISAs vary quite widely.
 !
 ! i. Many ISAs pass parameters using the stack - i.e. the caller
 ! pushes the parameters on the stack before calling the
 ! procedure.
 !
 ii. In the case of MIPS, a common convention is to use registers
 beginning with 4 for passing parameters. Some MIPS-based
 systems reserve 4 registers for this purpose (4 .. 7); others
 reserve 8 (4..11). We will discuss below what happens if some
 procedure requires more parameters than this - but this is
 relatively rare - procedures have relatively few parameters.)

 (a) Thus, in the getAge() example, the code in main will look
 like this:

 ! put p (address of object p refers to to) in $4
 ! jal start of code for getAge()
 ! output the value in $2 to cout

 (b) The code in getAge() will look like this

 ! lw $2, age field of person object pointed to by $4

 (c) As was true with the return address and return value, this
 is a SOFTWARE CONVENTION. Any registers could have been
 used for passing parameters - or some other strategy could]
 have been used, like pushing them on the stack. But since
 MIPS system software uses $4, $5, $6 and $7 for this
 purpose, the convention is to use these for user software
 as well (which often calls library routines anyway)

 iii. What does MIPS do if a procedure needs more parameters than
 there are registers reserved for this purpose (4 or 8)?
 (We've already noted that this will be rare.)

 In brief, the answer is that the extra parameters are pushed
 on the stack by the caller.

 iv. One more MIPS example: Given the following declaration:

! ! ! ! ! void foo(int a, int & b)
! ! ! ! ! ...
! ! ! ! And call
!
! ! ! ! ! int x;
! ! ! ! ! foo(3, x);
!
! ! ! ! And assuming that x is stored in memory location 1000, then
! ! ! ! the MIPS parameter registers would be as follows:
!
! ! ! ! $4: 3 <- value of a - passed by value
! ! ! ! $5: 1000 <- address of b - passed by reference

 B. The Issue of Register Preservation

 1. One issue we haven't faced in our examples yet is that of
 PRESERVING REGISTER VALUES ACROSS CALLS. But this is important
 in many cases.

 2. Procedures are of two general types:

 a. "Leaf" procedures do not, themselves, call other
 procedures. (In our example, getAge() is a leaf procedure.)

 b. "Non-leaf" procedures do call other procedures. (In our
 example, getAge() might need to be a non-leaf procedure if
 instead of storing the person's age in the object, we
 stored the person's date of birth. Then getAge() would
 have to COMPUTE the age by getting the current date, and
 then calling a method of class Date that gets the difference
 in years between two Dates.)

 3. A non-leaf procedure has to deal with the saving of information
 in registers that might be changed when calling another
 procedure.

 Example: If we stored the person's date of birth instead of
 current age, then getAge() would look something like
 this - assuming the field in the object that holds the
 person's birth date is called dob, and that there is a
 Date class with suitable methods:

 int getAge()
 {
 Date today = Date.getToday();
 return today.yearsSince(dob);
 }

 This could translate into assembly language code like the
 following:

 # Note: upon entry "this" is in $4
 # and return address is in $31
 jal code for getToday() method of Date
 put returned value in $4
 lw $5, dob field offset($4)
 jal code for yearsSince() method of date
 # return value from yearsSince() method is already in $2
 jr $31 # Return to original caller

 Unfortunately, though, this won't do what we want it to. Why?

 ASK

 a. The lw $5 that sets up the second parameter to yearsSince()
 assumes that $4 holds the "this" pointer for the method.
 That was correct upon entry, but the previous instruction put
 a different value in $4. Even if this were not so, the
 getToday() method code might have changed $4 somehow.

 b. The final jr $31 assumes that $31 contains the address to
 return to in the caller. But the two intervening jal's will
 have changed this.

 This illustrates the necessity of non-leaf procedures preserving
 registers that it needs.

 4. In general, there are two approaches one might take to addressing
 this issue:

 a. The "caller save" approach: when a non-leaf procedure calls
 another procedure, it must assume that the procedure it calls
 may change any of the registers. Therefore, the caller must
 save the values of any registers it needs before it calls
 the other procedure, and restore the values after the called
 procedure returns.

 Example: in the above, the getAge() method needs to make use
 of values that are in $4 and $31 when it is called.
 Therefore, it would need to save these two values in
 a safe place before calling getToday(). It would
 need to restore $4 before loading the dob argument
 for the second call, and would need to restore $31
 just before it returns to its caller.

 Under this convention, a caller can make NO assumptions about
 what values are in the registers when a call to another
 procedure finishes. This might be called the "defensive
 driving" approach to register preservation.

 b. The "callee save" approach: a procedure that alters a value
 stored in any register must save the value that was in that
 register when it is entered, and restore it just before it
 returns.

 Example: In the above, getAge() would be responsible for
 saving and restoring the values in $4, $5, and $31.

 Under this convention, a caller can assume that a called
 procedure does not make any visible changes to any registers -
 except, of course, the register holding a return value if there
 is one. This might be called the "clean up your own mess"
 approach to register preservation.

 c. Note that the choice of approach to take is really a matter of
 software convention, not hardware design (though some
 ISA's include mechanisms to facilitate one or the other of the
 two approaches - e.g. the DEC VAX has a mechanism that allows
 a procedure to specify that certain registers be saved by any
 CALL instruction that calls it and restored by the RET
 instruction that it uses to return - i.e. the hardware
 implements a callee save facility.)

 5. Software conventions on MIPS use a hybrid approach - some
 registers are designated as callee save registers, while the
 rest are caller save.

 HANDOUT - MIPS conventions

 a. Callee save - a procedure that modifies any of these registers
 MUST save them and restore them:

 i. Registers $16 .. $23 - known by the special names s0 .. s7
 (where s stands for "saved")

 ii. Registers $28 .. $$30 - known by the special names $gp, $sp, $fp
 ($sp and $fp are discussed below).

 iii. Register $31 - known by the special name ra (return address -
 as already discussed)

 - A leaf procedure does not need to save its return address,
 since it doesn't call other procedures. Thus, the MIPS
 convention of putting the return address in a register rather
 than pushing it on the stack avoids a stack push in this
 case.

 - A non-leaf procedure must always save its return address, since
 $31 is used for the procedures it calls.

 b. Caller save - a procedure that needs any of these registers after
 a call to another procedure must save them before the call and
 restore them afterward:

 i. Registers $2 .. $3 - known by the special names v0 .. v1
 (where v stands for "value" - these are used for return
 values of procedures - of course, when calling a function,
 it is often desired to get a return value in these registers
 anyway, so saving/restoring them is rarely desirable.)

 ii. Registers $4 .. $7 - known by the special names a0 .. a3
 (where a stands for "argument")

 iii. Registers $8 .. $15, $24 .. $25 - known by the special names
 t0 .. t9 (where t stands for "temporary")

 c. The remaining registers are special in some way, and are not
 ordinarily altered by user-written procedures

 i. Register $0 - known by the special name zero - always contains
 zero (hardwired)

 ii. Register $1 - known by the special name at (where at stands
 for assembler temporary) reserved for use by the assembler
 when constructing 32-bit immediate values or addresses that
 require two instructions to create

 iii. Registers $26 .. $27 - known by the special names k0, k1
 (where k stands for kernel) reserved for use by the kernel of
 operating system - may change at any time outside the control
 of the user program.

! 6. One issue we have not yet discussed is the question of WHERE we
 save registers.

 a. At first glance, it might seem that setting aside a special area
 in memory for each procedure would suffice - but this will not
 always work. Why? ASK

 Recursive procedures

 b. The convention used by most ISA's including MIPS - is to make use of
 the procedure's stack frame.

 i. To save a register, it can be pushed on the stack.

 ii. To restore a register, it can be popped from the stack. Note
 that, due to the LIFO property of stacks, restoring pops would
 have to be done in the reverse order of saving pushes.

 iii. On some ISA's - including MIPS - it is more efficient to push a
 whole stack frame, and then store the register values into the
 various slots, rather than to push each register individually.
 We'll see how this works out in the handout.

 C. Go over handout example program

IV. More About Memory Allocation
-- ---- ----- ------ ----------

 A. At this point, it may be worthwhile to pull together various comments
 we've made about how MIPS systems (and, indeed, most systems) handle
 the allocation of physical memory for various purposes.

 B. Recall that most systems divide memory into a user portion ("user space")
 and a system portion ("kernel space"). We are only concerned with user
 space here. How kernel space is divided up is a bit more system-
 dependent.

 C. Typically, user space is divided into four regions - often with large
 unallocated spaces between them. The following is a typical structure:

 --------------------------- Lowest address in user space
! |!! ! ! ! ! ! |
 |!CODE! ! ! ! ! |
! |!! ! ! ! ! ! |
 ---------------------------!
! |!! ! ! ! ! ! |
 |!GLOBAL DATA!! ! ! |
! |!! ! ! ! ! ! |
 ---------------------------!
! |!! ! ! ! ! ! |
 |!HEAP | (growth)! ! |
 | v!! ! ! ! |

 | ////! ! ! ! ! |
 |!//// Unused!! ! ! |
 |!////! ! ! ! ! |

 | ^! ! ! ! |
 | STACK | (growth)! ! |
 ! |!! ! ! ! ! ! |
 --------------------------- Highest address in user space

 1. The code region contains the machine-language version of the program.
 This is typically loaded at program startup, and is not changed during
 program execution. (Often, this region of memory is mapped
 "read-only" during program execution.

 2. The global data region contains variables and arrays that exist
 throughout the execution of the program. This includes:

 a. Global variables declared outside of any function or class in a
 language like C/C++.

 b. Static variables in the various classes for languages like C++.

 Note that, while the values of these variables can certainly change
 during program execution, the fact that a particular variable is
 found at a particular address does not change during program
 execution.

 3. The heap region contains variables that are created dynamically
 while the program runs - e.g. objects created by new in languages
 like C++, or by routines like malloc() in C.

 a. Because new variables can be created in this region in any time,
 it can grow during program execution. This is managed by the
 sytem maintaining a "fence" value that represents the largest
 valid address in the heap - any address <= this is part of the
 heap; > this is unused. By increasing the value of the fence,
 the heap can be expanded.

 b. Of course, variables that are created in the heap can also be
 destroyed - e.g. by delete in C++ or free() in C. Typically,
 what happens in this case is the system uses the memory that
 they formerly occupied to satisfy a new request - i.e. the heap
 usually does not shrink during program execution, but space can
 be recycled.

 4. The stack is used for allocating temporary memory for procedures.
 Whenever a procedure is called, a certain amount of memory (called
 its "stack frame" or "activation record" is allocated on the stack).
 When the procedure terminates, this memory is released for
! ! reallocation. Since procedures obey a "last in first out" discipline
! ! for calls and returns, this space grows and shrinks constantly
! ! during program execution.
! !
 D. Example: consider the following class

 ! class SomeClass
 ! {
 ! ! ! int someInstanceVariable;
 ! ! ! static int someStaticVariable;

 ! ! ! void someMethod()
 ! ! ! {
 ! ! ! ! int someLocalVariable;
 ! ! ! ! ...
 ! ! ! }
 ! };

 !
 ! main()
 ! {
 ! ! SomeClass c = new SomeClass();
 ! ! c.someMethod();
 ! ! ...
 ! }
 !
 ! When someMethod is being executed, the various variables are allocated
 ! space as follows:

 --------------------------- Lowest address in user space
! |!! ! ! ! ! ! |
 |!CODE! ! ! ! ! |
! |!! ! ! ! ! ! |
 ---------------------------!
! |!someStaticVariable! ! |
 |!GLOBAL DATA!! ! ! |
! |!! ! ! ! ! ! |
 ---------------------------!
! |!c.someInstanceVariable! |
 |!HEAP | (growth)! ! |
 | v!! ! ! ! |

 | ////! ! ! ! ! |
 |!//// Unused!! ! ! |
 |!////! ! ! ! ! |

 | ^! ! ! ! |
 | STACK | (growth)! ! |
 ! |! someLoclaVariable! ! |
 --------------------------- Highest address in user space

