
CPS331 Lecture: Genetic Algorithms	 	 last revised October 28, 2016

Objectives:

1. To explain the basic ideas of GA/GP: evolution of a population; fitness,
crossover, mutation

Materials:

1. Genetic NIM learner demo
2. Projectable of wall-follower robot problem and a solution
3. Projectable of Nilsson figures 4.2 .. 4.9
4. Mitchell pp. 17-18 and 19-21 to read
5. Projectable of payoff matrix - p. 18
6. Floreano §1.12.1 to read
7. Projectable of bottom two sections of Floreano figure 1.16

I. Introduction

A. Genetic algorithms represent an attempt to imitate the architecture of
intelligence present in nature - in this case, the “intelligence”
exhibited by a species (not individuals) as it evolves to better fit its
niche in the ecosystem. That is, genetic algorithms draw their
inspiration from biological evolution.

Some key concepts of biological evolution.

1. The notion of a population, which is a collection of inter-breeding
individuals.

2. Diversity within a population. Though the individuals in a
population are similar, they are not identical. Some are more “fit“
than others.

3. Selection. Evolution does not operate to improve individuals;
rather, it operates to improve populations by increasing the

1

proportion of individuals exhibiting more fit characteristics over
time. This happens because more fit individuals are more likely to
reproduce, either because of being better able to survive, or
because of other characteristics that increase their likelihood of
reproduction (e.g. the fancy plumage of male birds in breeding
season).

4. Heredity. An individual’s physical characteristic are encoded in its
DNA in the form of genes. (Humans, for example, have
20,000-25,000 genes). An individual’s genes are copied from the
genes of its parents. In the case of sexual reproduction, half the
genes of an offspring come from its father and half from its
mother.

Because more fit individuals are more likely to reproduce, the
proportion of their genes in the population tends to increase over
time.

5. Mutation. Occasionally, a gene will be slightly altered by random
processes as it is transmitted from parent to child, Such mutations
are often harmful, resulting in a child that is less fit than its parents;
but sometimes a mutation is beneficial, makes the child more fit,
and is passed on from that child to its offspring.

Mutation plays an important role in biological evolution, because
without it evolution can only rearrange existing genes, but cannot
discover new ones.

B. For a problem to be a good candidate for using a genetic algorithm or
genetic programming, several things need to be true.

1. The problem can't be “all or nothing” - that is, it must be
meaningful to talk about “solutions” which are less than perfect,
just as there can be diversity of fitness among individuals in a
biological population.

2

a) This does not preclude the possibility of there being a perfect
solution - but it is to say that a solution that is less than perfect
must still be a viable solution.

b) Moreover, given a set of proposed solutions, there must be
some straightforward way to evaluate their relative fitness, so
that it is meaningful to talk about “better” solutions.

2. It must be possible to break a solution up into “genes” - each of
which represents part of the solution - which are, at least to some
extent, independent of each other.

a) Frequently, genetic algorithms combine two “parent”
individuals to produce an “offspring” individual by using
crossover . Crossover consists of taking some genes from one
“parent” and the remaining genes from the other “parent”. (In
fact, often the crossover of two parents is used to produce two
offspring, with the second offspring having the reverse pairing
of genes.)

b) Frequently, genetic algorithms do mutation by randomly
selecting a gene of an offspring and changing is value to some
other random - though legal - value.

3. Some examples of problems which lend themselves to this
approach.

a) A two-player game, such as the checkers program which is the
basis of Fogel's book.

(1)Checkers can be played by individuals at a wide variety of
skill levels.

3

(2)The obvious measure of fitness is how well the program
plays against players of various ability levels.

(3)A major factor in how well a game player program performs
is its static evaluation function. This, in turn, can be
decomposed into genes representing the weight assigned to
various features being considered, or - as Fogel did - weights
assigned to various connections in a neural network that
does the static evaluation. (We will discuss neural networks
in the next lecture.)

(4)Fogel's book describes a program which used a genetic

algorithm to learn the weights to use for the static evaluation
function by playing games against human players under the
pseudonym "Blondie24".

b) Control problems (like teaching a robot to walk).

Several years ago, we had a speaker here who discussed work
he was doing on using genetic programming to evolve a
program to enable a hexapod robot to walk (actually a quite
non-trivial task if the terrain is uneven)

(1)A perfect solution would keep the system behaving in the
desired way endlessly, but a solution that keeps it behaving
the desired way for a long time is still useful. (Even we
sometimes fall down while walking!).

(2)Solutions can be compared based on how long they keep the
system behaving in the desired way before failing.

(3)The problem can be decomposed into “genes” representing
the relationship between various percepts and actions.

4

c) Optimization problems like traveling salesman.

(1)For large problems, we generally have to accept a good
solution, even if it is not possible to find a provably optimal
one. (Indeed, what we think to be a good solution may turn
out to be the best possible, even if we can’t prove that it is!)

(2)But solutions can be compared on the basis of total cost.

(3)The problem can be decomposed into “genes” representing
the relative order of visiting cities.

C. Genetic algorithms/programming are an approach to problem solving
in which a population of potential solutions is evolved to produce
increasingly better solutions to the problem.

1. Genetic algorithms/programming, though inspired by biological
evolution, differ from it in one important respect - the existence of a
goal (other than simple survival) by which fitness can be measured.

When evolution has been successful, the most fit individual in the
population is taken as being the solution to the problem

2. There are two related concepts: genetic algorithms and genetic
programming.

a) Sometimes, the goal is to find a solution to a problem, with
fitness being determined by measuring some quality of the
solution (e.g. traveling salesman)

b) At other times, the goal is to to evolve a computer program that
effectively solves a given problem, in which case, the approach
is called genetic programming, and fitness is measured by
measuring the quality of the resultant solution (e.g. checkers
playing or controlling a hexapod robot).

We will look at examples of both approaches.

5

D. A genetic algorithm can be thought of as a form of reinforcement
learning, best suited to problems where a solution is not known ahead
of time and cannot be found by more traditional means.

1. The examples we will use are not really a good example of a place
where Genetic Algorithms/Programming is useful, since the tasks
can be programmed directly in a straight-forward way.

2. But they are good examples for understanding the process itself.

E. This field is fairly new. Some indication of how new it is can be seen
by what I have discovered when I first looked for books on it..

1. In 1999, there was no subject heading for “Genetic Algorithms” or
“Genetic Programming” in the online card catalog from NOBLE.

(Of course, there is now for both)

2. In 1999, we had one book on the subject - An Introduction to
Genetic Algorithms by Melanie Mitchell. However, it was housed
in the Genetics section under Biology in the library! (Based on the
LC classification in the book itself - indicating that the LC
classification system itself had not caught up with this new field.).

(Today., the LC classification system has caught up)

II. Structure of a Genetic Algorithm

A. A GA proceeds by evolving a population of individuals, each of which
represents a different possible solution to the problem at hand. (In the
case of GP, each individual represents a possible program.)

1. Possible solutions to a given problem are encoded as a sequence of
“genes”, each of which may be (depending on the problem) a
value from a discrete set of possible values, or a real number.

6

2. The initial population is constructed by choosing values for each
gene at random. It is therefore unlikely that any individual in the
population constitutes a good solution to the problem.

3. Over time, the population evolves to consist of increasingly fit
individuals, until an individual representing a satisfactory solution
is found.

B. We will use a very simple variant of the game of NIM as an example.

1. This is not a good example of a problem where a genetic approach is
really useful (since we know an algorithm for perfect play), but it does
provide a simple illustration of how genetic programming can be applied.

2. (Explain the one-pile variant of the game, then play a few demo
games, using a maximum move of 3)

3. For this game (and indeed for all variants of NIM) there is an algorithm
for perfect play, such that a player who will almost always win.

The algorithm is this:

a) Define a "safe" state of the board as one where the number of pieces is
a multiple of the maximum move+1 (e.g. a multiple of 4 in this case).

By this definition, the winning state is a safe state.

b) An unsafe state is any state that is not safe.

c) Observe the following:

(1) If a player is confronted with a board that is an unsafe state,
there is always a legal move that will put it in a safe state.

(Take number of pieces % (maximum move + 1))

7

(2) If a player is confronted with a board that is in a safe state, any
legal move will result in putting it in an unsafe state. (Since
taking 0 - the move given by the above formula - is not allowed)

d) The algorithm is this - always make the move that leaves the
board in a safe state, if possible. If a player once leaves the board
in a safe state, his opponent will be forced to leave it an unsafe
state, and the knowledgable player can always put it back into a
safe state, ultimately putting the board in the empty state.

e) (If two players both use the algorithm to play, the winner will
be determined by whether the initial state of the game is safe or
unsafe; but a player who uses the algorithm can always
capitalize on just a single mistake by his opponent.)

4. We can represent a strategy for playing this variant of NIM as a
vector of moves corresponding to each possible state of the pile -
each of which we will consider to be a gene.

For example, with a pile size limited to 10 and moves limited to
taking 3 items, there would be 10 genes, each a number in the range
1 .. 3 (except that the first gene would have to be 1, and the second
would have to be either 1 or 2 to comply with the rules of the game.)

a) In this case, one possible solution might be

1 1 3 2 2 2 1 3 1 3

This says “if the pile contains 1 item, take 1; if it contains 2,
take 1; if it contains 3, take 3; if it contains 4 take 2 ...”

b) Obviously, the above is far from a perfect solution. However,
it is still meaningful to call it a solution.

Note that it will win in some cases - even if playing against an
algorithmic player - e.g. game starts out with 8 items; opponent

8

takes 2 (there is no algorithmically correct choice) leaving 6;
program takes 2 leaving 4; opponent takes 1 leaving 3; program
takes 3 and wins.

c) It is, of course, easily possible to create a random population of
solutions by randomly choosing values in the range 1 ..
maximum move for each gene. (Except that gene 1 must be a
1, gene 2 must be a 1 or a 2 ...)

C. A fitness function measures the extent to which each individual in the
population represents a good solution to the problem. Initially, given
random individuals, the fitness function for each individual will be small;
but there will be some that are better than others, and the GA will attempt
to evolve their good points into the next generation of possible solutions.

1. That is, the critic in the learning system evaluates the overall
fitness of each individual.

2. For the NIM Example, solutions can be compared by having each play
against the pool of others and measuring fitness as percentage of wins.

For the initial, random population, we would expect the average
fitness of an individual to be 50%. However, it is likely that some
individuals will be more fit than this, while others will be less.

a) For the example we will use for demonstration, it turns out that,
with an initial population of 500, the most fit individual initially
will have a fitness of over 90%, while the least fit will be under
10%. (Of course, since fitness is measured relative to other
individuals in the population, even an individual that scores
very high may not really be very good!)

b) Actually, in the program we will use for demonstrations, we
measure the fitness of an individual by having it play the other
individuals in the population, with the individual whose fitness
we are measuring playing first.

9

In the case of a population of perfectly fit individuals, we
would, of course, expect all individuals to have the same
fitness. What would that fitness be?

ASK

75%. A player that follows the NIM algorithm in a game with a
maximum move of 3 will always win any game he moves first
in if the initial state of the pile is unsafe. But if the initial state
is safe, and the opponent also follows the NIM algorithm, then
the player who moves first will lose. If the initial pile size is
chosen randomly, then 1/4 of the games will start out with the
pile in a safe state - and even a perfectly fit player will lose
these.

c) Note that the critic does not attempt to evaluate fitness in terms
of the correctness of individual moves, but in terms of overall
performance. (To make the problem interesting, we have to
assume we don’t actually know what the correct move is!)

d) DEMO: genetic NIM - show initial random population., noting
fitness evaluation for each.

D. Evolution of the population consists of a series of generations.

1. In each generation, the individuals in the population are tested and
the most fit are allowed to reproduce.

2. Typically, reproduction is done by crossing two fit individuals, in
the hope that their offspring will inherit the good features of each
and thus be even more fit (though, of course, some inherit bad
features from each parent and end up less fit.)

3. A small amount of random mutation is also often allowed

10

4. Each generation may consist of a completely new collection of
individuals created by crossover and/or mutation from the
individuals in the previous generation - i.e. individuals “live” for
only one generation. However, it is also possible to allow a subset
of the most fit individuals in one generation to survive unchanged
to the next.

E. Crossing is handled as follows:

1. If each individual has the same number of genes arranged in some
kind of sequence - we can pick a crossover point in the sequence at
random, generating two offspring - e.g.

Individual A: A1 A2 A3 A4 A5 A6 A7 A8
Individual B: B1 B2 B3 B4 B5 B6 B7 B8

Offspring if we cross between genes 2 and 3:

A1 A2 B3 B4 B5 B6 B7 B8
B1 B2 A3 A4 A5 A6 A7 A8

(We may choose to keep both offspring, or just one.)

2. NIM Example

a) Suppose we want to cross the solutions

1 1 3 2 2 2 1 3 1 3 and 1 2 3 3 2 1 1 2 3 2

just after the fifth gene

The “children” of this cross are

1 1 3 2 2 1 1 2 3 2 and 1 2 3 3 2 2 1 3 1 3

b) Given that we know the NIM algorithm, comparing the expected
fitness of the “children” to that of the parents is instructive

(1) In the case of each of the parents, half of the genes for which
we know an algorithmically correct value are correct

11

1 1 3 2 2 2 1 3 1 3	 1 2 3 3 2 1 1 2 3 2
R W R - W R W - R W	 R R R - W W W - W R

4/(4+4) = 0.5	 4/(4+4) = 0.5

(2) In the case of the children, one is better and one is worse.

1 1 3 2 2 1 1 2 3 2	 1 2 3 3 2 2 1 3 1 3
R W R - W W W - W R	 R R R - W R W - R W

3/(3+5) = 0.375	 5/(5+3) = 0.625

(3)Of course, in a real problem we wouldn’t be able to make
this sort of comparison!

F. Mutation is done by randomly altering an individual gene. This may
result in a solution that is less fit, more fit, or having the same fitness
as the original.

1. Mutation is often important, because it may be that no individual in
the initial population contains the “correct” value of some gene, or
perhaps the “correct” value of a gene is lost early due to
incompatibility with some other genes that are selected away later.

2. Of course, mutation can also be harmful, causing a “correct” value
that was discovered by selection to be lost.

3. Mutation is usually done with a fairly small probability - e.g. (say)
1% of the individuals in the new generation may undergo
mutation.

4. NIM Example:

a) Suppose we mutate 1 1 3 2 2 2 1 3 1 3 at the third gene. Any
change we make will produce a less fit individual, since that
gene was “right”

12

b) OTOH, if we mutate this individual at the fifth gene, a change
to 1 will likely produce a more fit individual, while a change to
3 will likely produce no fitness change.

G. Everything is done randomly, often with probabilities determined by
fitness:

1. We have already noted that the initial population is generated
randomly.

2. Some implementations may allow some individuals to survive
unchanged to the next generation. In this case, the individuals that
survive can be selected randomly, with probability based on fitness
- i.e. the more fit individuals have a higher probability of survival.
(In some implementations, the most fit individuals may be
guaranteed the right to survive unconditionally).

3. The individuals that reproduce may be selected randomly, with a
probability based on fitness - i.e. the more fit individuals are given
a higher probability of selection and the less fit ones a lower
probability. (In some implementations, the most fit individuals
may be guaranteed an opportunity to reproduce.)

4. The crossover point used when crossing parents is chosen
randomly.

5. Whether or not a given gene is mutated is determined randomly
with a predetermined - usually quite low - probability - typically
independent of fitness - and if it is mutated, the change is
determined randomly.

H. Depending on the nature of the problem, repetition of the process of
creating new generations may continue until an individual is found

13

that is adjudged to be perfectly fit, or until fitness stops improving, or
after a predetermined number of generations.

I. Simulated evolution of this sort differs from biological evolution in
several ways:

1. We have already noted one - the notion of an explicit goal

2. Another difference is the use of discrete generations.

3. A third difference may be the possibility that a very fit individual
might survive for many generations.

J. Demonstrate NIM Example

1. Observe initial population. Note how much of the game the best
individual has learned (first place where it has a “wrong” value)

2. Observe population as evolution with population 500 is done through
100 generations. Note how much of the game has been learned now.

3. Demonstrate games at this point

4. Learn for another 100 generations and look at learner.

K. Interestingly, if we change the rules of the game the learner can learn
the new game (which in effect means it has to forget the old game)

1. Start with learner that has learned 200 generations above.

2. Change the game to use a maximum move of 4 (optimum move is
size of pile % 5).

3. Play a game - note how badly it does initially.

4. Learn through 200 generations.

5. Note how much of the game - but not all yet - has now been mastered.

6. Learn for another 200 generations - note improvement.

14

III.A Genetic Programming Example

A. A book that we have used in a previous version of the course includes
a nice example of genetic programming, where a computer program
to solve a problem is evolved by genetic means.

B. The problem is to evolve a program for a robot such that, when it is
placed in an enclosed room, it moves to a wall and follows the wall
around the room.

E.g. Given a room like this: (PROJECT)

We want the robot to do something like this (though we don't care
how it gets to the wall initially or whether it moves clockwise or
counterclockwise). (PROJECT)

R

15

C. The primitives from which the program is to be constructed are the
following.

1. Actions: north, east, south, west - move one block in the specified
direction (if possible - otherwise do nothing)

2. Tests: PROJECT NILSSON FIGURE 4.2

a) n, e, s, w - return true (1) if movement in the specified direction
is blocked by a wall

b) ne, se, sw, nw - return true (1) if there is a wall in the specified
direction - including possibly a corner that doesn't actually
block one of the robot's moves - e.g. ne would be true in all the
following cases:

R R R

(Note that these tests do not correspond directly to possible
moves - e.g. there is no northeast move, though it is possible (if
there are no walls in the way) to move northeast by moving one
block north then one block east - or vice-versa.

3. Boolean connectives:

AND (X, Y): if X == 0 then 0 else Y
OR (X, Y): if X == 1 then 1 else Y
NOT (X): if X then 0 else 1
IF (X, Y, Z): if X then Y else Z

4. Example of a program that would solve the problem:

NILSSON FIGURE 4.3 - PROJECT

Trace through how this program works in the example problem

16

D. Applying Genetic Programming to this problem

1. A population of random programs is created

2. For each generation, the fitness of each program in the current
population is evaluated. Fitness is measured as “number of
squares next to the the wall that the robot visits in some number of
moves”

a) In the particular case Nilsson used, the room had 32 squares
next to the wall.

b) Fitness was measured as the number of these squares the robot
visited in 60 moves from ten different random starting
positions. [A fitness score of 320 would be perfection].

3. Crossover is handled by switching subtrees between parents

NILSSON FIGURE 4.4 - PROJECT

4. Mutation could be handled by selecting a random subtree and
replacing it with a new randomly-grown subtree.

E. Experimental results reported by Nilsson

1. The most fit individual in Generation 0

NILSSON FIGURE 4.5 - PROJECT

2. The most fit individual in Generation 2

NILSSON FIGURE 4.6 - PROJECT

17

3. The most fit individual in Generation 6

NILSSON FIGURE 4.7 - PROJECT

4. The most fit individual in Generation 10 - a program that is
actually a 100% solution.

NILSSON FIGURE 4.8 - PROJECT

5. Evolution of fitness over the generations

NILSSON FIGURE 4.9 - PROJECT

IV.Another Genetic Algorithm Example (omit if insufficient time)

A. Melanie Mitchell's book - cited earlier - discussed some experiments
with using GA's to evolve a strategy for a game known as “the
prisoner's dilemma”.

1. READ Mitchell pp 17-18; PROJECT payoff matrix (p 18)

2. Mitchell's book discusses experiments done by Axelrod on this
game.

B. Any one game can be categorized in one of 4 ways (CC - both players
cooperated; CD A cooperated and B defected; DC; DD)

1. Because the programs in the tournament based their strategy on the
last three games played with the same player, each with a move by
each player, and with each move having two possible values, a
strategy must be able to cope with 64 possible histories:

3 games/history
2 player moves/game
2 choices/player move

18

2. For each history, it must make a choice to either defect or
cooperate on the next game. Thus, a strategy may be encoded as a
64 genes, each of which is either a C or a D, each representing the
choice called for by the strategy for one possible history - e.g.

choice to	 choice to 		 choice to
make if all 3	make if first	 	 make if all 3
games were	 two games were	 games were
CC 	 CC and last 	 	 DD
	 was CD

3. For example, TIT-FOR-TAT for Player A would be encoded as

CDCDCDCDCD ... CD (i.e. A always does what Player B did on
the last game)

C. Results: READ Mitchell page 19 bottom - 21 top

V. A genetic solution to a “real” problem

A. Another book develops an example where a genetic strategy was used
to actually design an antenna for use in a space probe.

B. READ Floreano section 1.12.1 (pp. 40-42); PROJECT bottom two
parts of figure 1.16

19

