
interface WordFrequencyList:

/**
 * An alphabetized list of words and associated frequencies of occurrence in
 * a text
 *
 * @author Russell C. Bjork
 * @version March 22, 2008
 */

public interface WordFrequencyList
{
 /** Record the occurrence of a word in the text
 *
 * @param word the word that occurred in the text
 * @return a modified list in which either the word is added at the
 * appropriate place with frequency of 1 (if it had not occurred
 * before), or the frequency of an existing word is increased by
 * one.
 */
 WordFrequencyList recordOccurrence(String word);

 /** Report the total length of this list
 *
 * @return the length of this list
 */
 int length();

 /** Report the total frequencies for all words in this list
 *
 * @return the total frequencies for all words in this list
 */
 int totalFrequencies();

 /** Report the number of occurrences of a particular word
 *
 * @param word the word
 * @return the number of times this word has occurred
 */
 int occurrencesFor(String word);

 /** Print all words in this list with their associated frequencies
 */
 void print();

 /** Convert words to all uppercase
 *
 * @return a fresh list with the same words but each in all uppercase
 * letters
 */
 WordFrequencyList capitalize();
}

class EmptyWordFrequencyList:

/**
 * An empty word frequency list
 *
 * @author Russell C. Bjork
 * @version March 22, 2008
 */

public class EmptyWordFrequencyList implements WordFrequencyList
{
 /**
 * Constructor for objects of class EmptyWordFrequencyList
 */
 public EmptyWordFrequencyList() {
 }

 // The following methods are specified by interface WordFrequencyList

 public WordFrequencyList recordOccurrence(String word) {
 return new NonEmptyWordFrequencyList(word, 1, this);
 }

 public int length() {
 return 0;
 }

 public int totalFrequencies() {
 return 0;
 }

 public int occurrencesFor(String word) {
 return 0;
 }

 public void print() {
 }

 public WordFrequencyList capitalize() {
 return this;
 }
}

class NonEmptyWordFrequencyList:

/**
 * A word frequency list containing one or more words
 *
 * @author Russell C. Bjork
 * @version March 22, 2008
 */

public class NonEmptyWordFrequencyList implements WordFrequencyList
{
 /**
 * Constructor for objects of class NonEmptyWordFrequencyList
 *
 * @param firstWord the firstWord in this list
 * @param firstWordFrequency the frequency for this word
 * @param rest the rest of this list
 */
 public NonEmptyWordFrequencyList(String firstWord,
 int firstWordFrequency,
 WordFrequencyList rest) {
 this.firstWord = firstWord;
 this.firstWordFrequencyCount = firstWordFrequency;
 this.rest = rest;
 }

 // The following methods are specified by interface WordFrequencyList

 public WordFrequencyList recordOccurrence(String word) {

 if (firstWord.equals(word)) {
 // The word matches the first word in this list - create
 // a new list with modified frequency for this word, and the
 // same rest
 return new NonEmptyWordFrequencyList(firstWord,
 firstWordFrequencyCount + 1,
 rest);
 }
 else if (firstWord.compareTo(word) < 0) {
 // The word is after the first word in this list - create
 // a new list containing the same first word, but with a rest
 // that records the modified count for the word
 return new NonEmptyWordFrequencyList(firstWord,
 firstWordFrequencyCount,
 rest.recordOccurrence(word));
 }
 else {
 // The word belongs before the first word in this list - hence
 // needs to be added before rest of list
 return new NonEmptyWordFrequencyList(word, 1, this);
 }
 }

 public int length() {
 int restLength = rest.length();
 return restLength + 1;
 }

 public int totalFrequencies() {
 int restTotalFrequencies = rest.totalFrequencies();
 return restTotalFrequencies + firstWordFrequencyCount;
 }

 public int occurrencesFor(String word) {
 if (firstWord.equals(word))
 return firstWordFrequencyCount;
 else if (firstWord.compareTo(word) < 0)
 return rest.occurrencesFor(word);
 else // Word would have occurred by now if it were present
 return 0;
 }

 public void print() {
 System.out.println(firstWord + " " + firstWordFrequencyCount);
 rest.print();
 }

 public WordFrequencyList capitalize() {
 return new NonEmptyWordFrequencyList(firstWord.toUpperCase(),
 firstWordFrequencyCount,
 rest.capitalize());
 }

 private String firstWord; // The first word in the list
 private int firstWordFrequencyCount; // Its frequency of occurrence
 private WordFrequencyList rest; // The rest of the list
}

