
CS112 Lecture: Arrays and Collections

Last revised 3/18/09

Objectives:

1. To introduce the use of arrays in Java
2. To examine some typical operations on arrays and introduce the appropriate

patterns
3. To introduce sorted arrays
4. To introduce multi-dimensional arrays
5. To introduce collections

 Materials:

1. Projectable and demonstrable version of non-array and array versions of "reverse
list of numbers" program, plus improved version allowing arbitrary size.

2. Projectable version of excerpt from “array of runners” version of steeple chase
robot problem

3. Projectable version of code excerpts illustrating array operations: Figure 14.5 in
book, sum, maximum, searching, sorting, expansion

4. ArrayParametersDemo.java, .class + handout
5. Projectable version of ordered array of runners example from text - Figures 14.26,

14.27, 14.28 plus code for RaceStatistics class
6. Excerpts from AddressBook class given to students for project 3
7. Non recursive solution to word frequency problem from recursion lecture
8. Projectable version of YearlyCalendar example from text

I. Introduction to Arrays

A. Consider the following problem: we want to read in a list of 5 numbers and
print them out in reverse order.

1. Clearly, we need to read all of the numbers before we can print any of
them out. This means we have to store all the numbers in variables.

2. One solution would be to use 5 variables:
PROJECT BadReverse.java
DEMO

3. However, needing to have 5 distinct variables is cumbersome, and an
approach like this would become essentially impossible if we were
working, say, with 100 numbers, or 1000, or 10,000 !

1

4. To deal with situations like this, Java - like most programming languages -
provides a built in data structure called an array. In Java, a variable is
declared to be an array by following the type name with a pair of square
brackets ([]), and individual elements in the array can be referenced by
following the name of the variable with a subscript enclosed in square
brackets. In particular, our example could be handled as follows:

PROJECT GoodReverse.java

DEMO

Note that the complete program is now shorter than the original program
- and would be much shorter if we compared programs for a larger
number of values. Further, it could easily be modified to work with any
number of numbers by changing the initial declaration of the size of the
array. Every Java array has a field called length with specifies the number
of elements specified when the array was created. (Note that, for arrays,
this is a field, not a method, so no () are used.)

5. In fact, it would be easy to create a variant of this program which allows
the user to specify the number of numbers when the program is run.

PROJECT EvenBetterReverse.java

DEMO

B. Recall that earlier we say that Java has two basic kinds of data types:
primitive types and reference types. The latter category has two
subcategories - objects and arrays. Arrays in Java can be thought of as a
special kind of object); however, the formal definition of the language
distinguishes them because of slight differences in the way they are used.
(For example, arrays have no methods).

C. To use an array in Java, you must:

1. Declare an array variable - two alternative, but equivalent syntaxes:

< type > [] < variable name > (preferred)
Example: int [] number;

or
< type > < variable name > [] (“C” style declaration)

Example: int number [];

2

2. Allocate storage for the array, using new
< variable name > = new < type > [< size >]

(Note: the type used here must be the same as the type used when
declaring the variable; and the size must be known at the time the array is
created - it can either be an integer constant, or an integer variable or
expression; in the latter case, the value of any variables at the time the
array is created are what is used.)

Example: number = new int [5];

This can be combined with declaration
< type > < variable name > [] = new < type > [< size >]

Example: int [] number = new int [5];

3. You can now

a) Refer to the array as a whole by using its name

b) Refer to the individual elements of the array by using

< variable name > [< subscript >]

where < subscript > is an integer in the range 0 .. size - 1

Examples:

number[3]
number[2*i+1]

(Note: Java uses zero-origin indexing. An array declared with size n
has elements 0 .. n - 1). So, the first element is called [0], the second
[1] ...

Note the distinction between the variable name all by itself - which
stands for the entire array, and the variable name plus subscript, which
stands for an individual element of the array. Operations such as
arithmetic, input, and output are done on the individual elements.

Example: If a given building is a single family home, you can address
mail directly to it. If it is an apartment building, you must specify a
particular apartment by giving an apartment number as well. You can

3

refer to the whole building for certain purposes - such as tax
assessment - but most of the time you will need to refer to a specific
apartment by number.

c) Refer to the number of elements in the array by
< variable name > . length
Example: number.length

D. One important characteristic of an array is that all of the elements of the array
have the same type. The type of the elements of an array, however, can be
any valid Java type.

1. A primitive type (boolean, char, int, etc.) - as in the example above

2. An object type. In this case, it is necessary not only to create the array,
but also to create the individual elements of the array - since they are
objects.
EXAMPLE: Consider the robot relay race problem, again. We could
extend the program to handle any number of robots, as follows.

PROJECT Code excerpt

int [] startAves = { 1, 5, 7, 13 };

SteepleChaseRobot [] runner = new
 SteepleChaseRobot[startAves.length];

for (int i=0; i < startAves.length; i ++)
{
 if (i < startAves.length - 1)
 runner[i] = new RelaySteepleChaseRobot(
 1, startAves[i], Directions.EAST, 0);
 else
 runner[i] = new SteepleChaseRobot(
 1, startAves[i], Directions.EAST, 0);
}

for (int i = 0; i < startAves.length; i ++)
 robot[i].runRace();

3. Another array type - yielding an array of arrays, or a multidimensional
array. (We’ll talk more about this later.)

E. Of course, it is possible to have an array of type char. How does this differ
from a String?

4

1. In some programming languages (e.g. C) there is no distinction - strings in
C are just arrays of characters.

2. In Java, type type String is a class that uses an array of char internally to
store the characters, which the various methods access. It is not, however,
possible to manipulate the array of characters comprising a String directly.

3. Interestingly, the C++ language supports both representations for strings -
arrays of char (so-called “C strings”) and its own string class. The latter,
however, has many advantages because one is not constrained to a fixed
size - and continuing use of the former turns out to be the reason for one
of the most common vulnerabilities exploited by Internet worms - the so-
called “buffer-overflow” problem.

F. Array initializers

1. Ordinarily, when an array is created, its elements are initialized to the
default initial value for the type involved - e.g. zero for numbers, ‘\000’
for characters, false for booleans, or null for reference types.

(null is a Java reserved word For any reference type, null is the value
that means the variable does not (yet) refer to anything. It is always an
error to try to execute any method of a variable that is null)

2. It is possible, however, to specify the initial value for an array when it is
declared - in which case an abbreviated notation is used that combines
declaration, creation, and initialization.

< type > [] < variable name > = { < expression > , < expression > ... }

EXAMPLES

a) An array containing of all the prime integers between 1 and 20:
int [] primes = { 2, 3, 5, 7, 11, 13, 17, 19 };

b) An array of strings containing the names of the people in the first row
of the room
String [] names = { --- whatever --- };

c) Typically, when we initialize an array this way, we use constants as the
initializers. Actually, though, it is possible to use an Java expression
whose value can be calculated at the point the array is declared - but
we won’t pursue this further.

5

II. Operations on Arrays

A. One typical thing to do with an array is to perform some operation on each
element of the array. This is most often done with a for loop. We’ll look at
several examples:

1. The book developed a Triangle class where a Triangle was represented by
an array of three lines. Various operations on the Triangle could be
implemented by performing the same operation on each of the lines.
PROJECT: Figure 14.5 from the book

2. Calculating the sum of all the elements in an array.

a) Suppose we have an array x of doubles. To store their sum in a
variable called sum, we could proceed as follows:
PROJECT

double sum = 0.0;
for (int i = 0; i < x.length; i ++)
 sum += x[i];

b) Alternately, if we want to work with all the elements of the array - as is
the case here - we could use an alternate form of the for loop (called
the enhanced for loop, and only available beginning with JDK 1.5)
PROJECT

double sum = 0.0;
for (double item : x)
 sum += item;

(The meaning is that item is a double which should successively taken
on the value of each element of the array x)

3. Finding the maximum (or minimum) valued element in an array.
Suppose we have an array x of doubles. We want to store the value of
the largest element in x in a variable called max.

a) The following is a first attempt - though it has a problem
PROJECT

double max = // See discussion below
for (int i = 0; i < x.length; i ++)
 if (x[i] > max)
 max = x[i];

6

The obvious problem with this solution is we do not know what initial
value to give to max. How can we solve this? ASK

b) The following is a solution that solves our problem
PROJECT

double max = x[0];
for (int i = 1; i < x.length; i ++)

if (x[i] > max)
max = x[i];

Note how we start examining array elements at x[1], since we
initialized max to x[0].

c) The enhanced for loop is less applicable here, since our loop explicitly
begins with element [1]; however, the correct result could still be
produced by using an enhanced for, given that no harm is done
comparing an item to itself.

ASK CLASS FOR ENHANCED FOR VERSION - THEN PROJECT
double max = x[0];
for (double item : x)

if (item > max)
max = item;

4. Searching an array to see if a given value is present in it. We will devote
more time to this in a later lecture, but we’ll look at one method now.

Suppose we have an array of Student objects called student, each of which
has a method called getName(), and we want to see if we have a Student
object for a student named “Aardvark”. The following code will return
the appropriate object if one exists, or null if it does not:
PROJECT

int i = 0;
while (i < student.length &&
 ! student[i].getName().equals("Aardvark"))
 i ++;
if (i < student.length)
 return student[i];
else
 return null;

7

a) Notice a pattern that is characteristic of searches: the test for the loop
contains two conditions to be tested on each iteration, which can be
paraphrase as “while there is still hope of finding what we’re looking
for and we haven’t yet found it yet ...”. This relates to the fact that
there are always two possible outcomes of a search: we may find what
we are looking for, or we may conclude it doesn’t exist.

b) Note, too, that we test the “there is still hope of finding it” case before
we test the “have we found what we’re looking for case”.
Why?
ASK
The test student[i].name.equals("Aardvark") would not be legal if i
were not < student.length.

c) One last point: the code we have written returns the actual object that
matched. We could, instead, return the index of the object that
matched. (In which case return student[i]; would become return i;).
One question arises in this case, though - what should be return if no
match is found?
ASK

(1) Clearly, the value returned must be one that cannot possibly be a
legitimate index of an array element. One possibility is -1, in which
case the if statement at the end becomes:

if (i < student.length)
return i;

else
return -1;

(2) Alternately, we could return a value equal to the length of the array,
which is clearly not a possible element since subscripts range from 0
to length -1. In this case, the final if simplifies to a single statement:

return i;

(3) Which alternative is better?

ASK

The first is better, since it does not require that the caller of the
search code know the length of the array - which could, in any case,

8

vary if we make provision for expanding the array if we need more
room. (The simplicity of the code in the latter case is more than
made up for by the additional complexity of the work done by the
user of this search routine.)

(4) This is not a case where the enhanced for loop could be used.
Why?

ASK

In a search, we generally don't need to consider all the elements of
the array.

5. Sorting all of the elements in the array based on their value. We will
devote more time to this in a later lecture, but we’ll look at one method
now - a method called bubble sort.

Suppose we have an array of Strings called name that we want to sort
into ascending alphabetical order. The following would do the job:

PROJECT

for (int i = 1; i < name.length; i ++)
 for (int j = 0; j < name.length - i; j ++)
 if (name[j].compareTo(name[j+1]) > 0)
 { // switch name[j] with name[j+1]
 String temp = name[j];
 name[j] = name[j+1];
 name[j+1] = temp;
 }

Discussion:

a) The outer loop iterates length - 1 times

b) Each time through the outer loop, we guarantee that the largest
element of name[0..length - i] is placed into slot length - i - so after
length - 1 iterations slots 1 .. length-1 are guaranteed to contain the
correct values, which means that slot 0 does too.

c) There are various improvements possible, which we will not discuss
now.

9

6. Expanding an array to accomodate growth over time

a) One problem one faces in using an array is deciding how big to make it
- especially if it is being used for a problem where the number of
elements in the array can grow over time.
This is an issue because the size of the array must be specified when it
is constructed.

(1) One approach is to specify a size that is so large that it is hard to
conceive that any real problem will exceed it.
Example: If we were using an array to record all of a person's
children, a size of 30 is probably safe! [But 10 or even 20 is not]

(2) A problem with doing this is that a lot of space tends to be wasted -
e.g. the average American family has about 2.3 children!

(3) The book uses this approach in the example if develops regarding
recording the times of runners - it takes the size of the largest team
and multiplies this by the number of teams to get a safe maximum -
unless the program is used without modification in a different town!

b) An alternative approach is to allow for growth by - when necesssary -
creating a new, larger array and then copying the existing elements to
it.
EXAMPLE: Figure 14.20 modified to grow the array when needed
PROJECT
public void addRacer(int bib, String time) {
 if (racerCount >= racer.length) {
 // No more room in the array - grow it
 RacerInfo [] newracer =
 new RacerInfo[2 * racer.length];
 // Copy existing values into the new array
 for (int i = 0; i < racer.length; i ++)
 newracer[i] = racer[i];
 // Replace the array with the new, bigger array
 racer = newracer;
 }
 racer[racerCount] = new RacerInfo(bib, time);
 racerCount++;
}

10

B. Passing an entire array as a parameter to a method, or returning an array as
the value of a method.

1. The book shows an example of returning an array as the result of a
method:
PROJECT Figure 14.6

2. It is also possible for an array to be a parameter to a method. The fact
that arrays are reference types has some interesting implications.
HANDOUT: ArrayParametersDemo.java
What will the output of this program be?
ASK
DEMO
We can see why the program does what it does by considering a state of
memory diagram showing the state that exists upon entry to foo():

Local variables of main

v

array1

array2

Parameters, local
variable of foo

x

a1

a2

a3

1 2 3 4 5 6 7 8 9 10

10 9 8 7 6 5 4 3 2 1

42

42

2 4 6 8 10 12 14 16 18 20

11

Upon exit from foo(), we have the following state of memory

Local variables of main

v

array1

array2

Parameters, local
variable of foo

x

a1

a2

a3

1 2 3 4 5 6 7 8 9 10

 20 18 16 14 12 10 8 6 4 2

42

43

2 4 6 8 10 12 14 16 18 20

III. Ordered Arrays

A. Sometimes we have a problem in which we need to keep the elements of an
array in some order. The book develops an extended example of this, in
which an array is used to keep track of runners in a race, and is maintained in
order of finish.

B. In a case like this, inserting a new element into the array requires shifting the
existing elements that belong after it.
PROJECT Figures 14.26, 14.27, 14.28 showing how inserting a new racer
with time 23:08 requires shifting 6 other finishes
PROJECT Code for addRacerAtPosition

C. A similar issue arises when removing an element, in which case elements after
it must be shifted down.
PROJECT code for removeRacerAtPosition() method

12

IV. Collections

A. An array can be thought of as a very simple case of a data structure called a
collection. Collections are useful whenever some one object must be related
in some way to multiple other objects of the same type.

EXAMPLE: Suppose we were trying to model the college’s registration
system by using Student objects to model individual students and Course
objects to model individual courses.

1. Each student object needs to be related to some number of courses in
which the student is enrolled.

2. Each course object needs to be related to some number of students who
are enrolled in it.

3. This could be managed by having an array field in each class - e.g.

a) in class Student:
....
Course [] coursesEnrolledIn;
.

b) in class Course
...
Student [] studentsEnrolled;

c) However, this solution suffers from two serious problems. What are
they?
ASK

(1) When an array is created, we must give it a specific size, which
cannot thereafter be changed. This poses a problem here, because
students may add or drop courses (requiring a change in the size of
their coursesEnrolledIn array, and also a change in the size of the
studentsEnrolled array for the corresponding course.)

(2) One refers to an element of an array by its position in the array -
e.g. studentsEnrolled[0] is the first student on the list of students for
a course. But in cases like this, one typically wants to be able to
refer to an array element by its value - e.g. the id or name of the
student.

13

d) These problems could be managed by

(1) Creating a new array of the appropriate size and copying the
elements from the old array to the new whenever a student adds or
drops a course, as we discussed earlier

(2) Using code like the searching example we did earlier to find a
specific student in the list of students (or course in the list of
courses).

(3) However, these solutions are cumbersome, and can be quite
inefficient if the list is long.

B. To deal with issues like this, the Java library includes a large number of
collection classes that provide various additional functionalities by way of
code that has been written by the authors of the library. We will discuss
collections more thoroughly in CS211; for now, we just want to look at a
couple kinds of collection that we either have seen or will see.

1. In project 3, the AddressBook class manages a collection of Persons. It is
a subclass of a Java library class known as java.util.Vector.

PROJECT excerpts from AddressBook for project 3 given to students

a) Class java.util.Vector. is an extension of the basic notion of an
array. In particular, it keeps track of the current number of elements
and automatically expands itself when necessary to accommodate a
new element.

b) However, elements in a vector are still accessed by explicitly specifying
a position. (This is not an issue in the address book problem, because
the edit and delete use cases involve the user selecting a position in the
displayed lists.)

c) Since JDK 1.5, class java.util.Vector has been a generic class
which allows one to explicitly specify the type of elements it contains,
just as one does with an array. (Note form of extends)

d) GO OVER A SUBSET OF CODE

(1) constructor

(2) add()

14

(3) getPerson()

(4) removePerson()

(5) sortByName() - note how it makes use of a library method that
actually does the sorting, based on a comparator specified via an
anonymous class

(6) then skip to search(). Note how we explicitly specify a starting
point (0 initially). elementAt(i) returns a Person object, and Person
defines a method called contains() which succeeds if the value
specified appears in one of the fields.

(7) Mention setupTests()

2. In the lecture on recursion, we looked at a non-recursive solution to the
word frequency problem. This made use of a library collection called
java.util.TreeMap

PROJECT non recursive solution to AddressBook problem

a) A map stores a collection of key, value pairs. In this case, the key is a
word, and the value is the frequency of occurrence of the word. (Of
course, if a word does not occur in the text, it does not occur in the
map either).

b) Since java.util.TreeMap is also generic, in the declaration and the
constructor (both) we specify the key type (String) and value type
(Integer).

c) The put() method is used to store a key and associated value, or to
change the value associated with a given key.

d) The get() method returns the value associated with a given key - or null
if the key does not occur.

e) The keySet() method returns a collection consisting of just the keys,
which is used for printing the collection.

f) Note how the enhanced for can be used with any kind of collection -
the set, in this case

15

V. Multidimensional Arrays

A. As noted earlier, the elements of an array can be of any type - including
another array type. This leads to the possibility of multidimensional arrays.

EXAMPLE:

Suppose we were writing a computer chess game, and had created a class
Piece to model individual chess pieces. Then a board could be represented as
an 8 x 8 array of pieces - as follows:

Piece [] [] board;
board = new Piece [8] [];
for (int row = 0; row < 8; row ++)
 board[row] = new Piece [8];

We could refer to an individual piece - say the piece in row 2, column 3, by
syntax like:

board[row][column]

(Note that the following syntax, used in some programming languages for
accessing elements of a multi-dimensional array, is not legal in Java:

board[row, column] // NO!!!

B. Actually, for initializing multi-dimensional arrays, a shorter but equivalent
syntax is available

Piece [] [] board;
board = new Piece [8] [8];
This initializes board to 8 uninitialized arrays of pieces, then in turn initializes
each array to be an array of 8 pieces, as desired.

C. The book develops an extended example of storing a calendar in a two-
dimensional array

1. The main array has twelve elements, corresponding to the 12 months of
the year.

2. The array for each month has 28 - 31 elements, corresponding to the days
of that month

PROJECT and discuss code for YearlyCalendar

16

3. A question for the class - can you think of a simpler way to do what
getDays() does?

ASK

Use array with an explicit initializer, then fine tune the value for February

Add the following to the constructor

int [] daysInMonth = {31,28,31,30,31,30,31,31,30,31,30,31};
if (year % 4 == 0 && (year % 100 != 0 || year % 400 == 0))

daysInMonth[1] ++;

Change getDays(month) to daysInMonth[month],

D. Another important use of two-dimensional arrays is to store an image, with
each element representing the brightness of a particular pixel in the image.
The book discusses this, and project 4 will be based on this idea.

17

