
CS112 Lecture: Declarations and Scope

Last revised 2/18/08
Objectives:

1. To introduce the technical terms “identifier”, “qualified”, “scope”, “shadow” and
“visibility”

2. To review the use of “static”

 Materials:
1. Scope Rules Examples Slide Show
2. Executable demonstration of program (in My Java Demos)

I. Identifiers and Declarations

One of the marks of a professional in any field is that he/she can use the technical
vocabulary of the field with precision. That is one of the key issues today.

A. In a programming language, whenever a word occurs (outside of quotation
marks or a comment) it is understood as being one of two things:

1. A keyword - one that has special meaning in the language. In any
programming language, there is a fixed list keywords that are part of the
language definition. In most languages, these are treated as reserved
words that cannot be used for any other purpose in a program. (For what
it’s worth, a complete list of the reserved words of Java appears in section
3.9 of the Java language specification.)

2. An identifier.

3. In a language like Java, any word that is not a reserved word is considered
to be an identifier.
Example:
for (int i = 0; i < n; i ++)
The compiler recognizes for and int as reserved words. It considers i
and n to be identifiers

B. The association of an identifier with a particular feature of a program is called
a declaration.

1. Languages like Java require that all identifiers that appear in a program
must be declared.

1

Example: int width;
width is identifier, and int width; is a declaration of the identifier width
as being the name of a variable of type int.

2. Some languages allow implicit declarations of a variable by using it in an
assignment statement - e.g.in some languages width = 50 would be taken
as a declaration of the variable width. The danger of this is that
typographical errors can go uncaught - if one mistakenly typed widh =
50, it could be understood as an implicit declaration of a new variable
widh, rather than a typo.

C. We have looked at quite a number of kinds of declarations that can occur in a
Java program. Let’s review:

1. Variable declarations

a) Instance variables

b) Class variables

c) Local variables

d) Parameters

2. Constant declarations

3. Method declarations

4. Constructor declarations

D. Whenever a identifier appears in a program, it must be associated with some
declaration, whch is taken as defining the meaning of that name. (An
identifier that cannot be associated with some declaration is reported as being
an error - an undeclared identifier.)

1. Example:
Robot karel;
...
karel.move();
In this case, the identifier karel in the second statement is associated with
the declaration given in the first statement.

2

2. In the case of Java, the compiler treats variable/constant declarations and
method declarations distinctly. If an identifier occurs without parentheses
after it, only variable/constant declarations are considered. If it is followed
by a left parenthesis, then only method declarations are considered.

a) In effect, the Java compiler divides identifiers into two classes - variable
identifiers and constant identifiers.

b) Thus, it is possible (though not good practice) for a Java program to
define the same word as both the name of a variable and the name of a
method.
Example: the following is legal, but not desirable!
void foo() {

System.out.println(“foo() called”);
int foo = 3;
System.out.println(foo);
foo();

}
If a program calls foo(), the following output is produced ad infinitum:
foo() called
3
foo() called
...

E. In general, when an identifier is used, it can be qualified by some other
identifier
Example:
karel.move();
The identifier move() is qualified by the identifier karel.

1. A qualified name specifies the context in which an identifier is to be
interpreted - in the above, the identifier move() is to be understood in the
context of the object named by karel.

2. An identifier that has not qualifier is called, of course, an unqualified
identifier.

3. In declarations, identifiers are never qualified. Only uses of identifiers can
be qualified.

3

II. Scope

A. For any declaration, the scope of a declaration is the region of the program
text where the identifier that has been declared can be used without
qualification.

Examples:

1. class Foo
{

public int bar;

...
}

The identifier bar can be used anywhere inside class Foo without
qualification. The scope of the declaration for bar is the entire class.

2. class Foo
{

public void something()
{

int bar;
...

}
...

}

The identifier bar can be used anywhere inside the method something()
without qualification. The scope of the declaration for bar is the method
something().

B. In Java, certain kinds of variables can never be qualified. Thus, they can only
be used within their scope.

C. Before looking at the scope rules, we need to consider the concept of a block.
In brief, a block is a body of code enclosed by braces - including any blocks
contained within it.

Example:

4

public boolean rightIsClear()
{

turnRight();
if (frontIsClear())
{

turnLeft();
return true;

}
else
{

turnLeft();
return false;

}
}

There are three blocks in this example, as shown by the three rectangles.
Note that the outer block includes the inner two.

D. Here is a summary of the scope rules of Java for identifiers we have learned about
so far. (There are actually a lot more! In particular, we don’t consider class names.)

Type of declaration Scope Can be used elsewhere
with qualification

method entire class block - even yes
before the declaration

instance variable entire class block - even yes
before the declaration

parameter entire method - including no
rest of the header, plus
complete block

local variable rest of the block - no
beginning at the point
of declaration to the
end of the block

variable declared in for loop for loop header no
plus statement

Examples of each (PROJECT - STOP WITH loop control variable - do not go onto
second instance variable)

5

E. One interesting question that arises is what if we have a declaration for a
given name occurring within the scope of another declaration for the same
name?

1. In many cases, Java does not allow this to occur. In particular:

a) A class cannot contain two methods with the same signature (name +
parameter types)

b) A method cannot contain a parameter or local or loop control variable
declaration for the same name as another parameter of the method.

c) A method cannot contain a local or loop control variable declaration
for the same name as a local variable previously declared in the same
method.

2. There is one place, however, where Java does allow this to occur: a
method can contain a parameter or local or loop control variable
declaration for the same name as an instance variable.

a) In this case, the local declaration is said to shadow the instance variable.
In particular, any unqualified use of the identifier in question will refer
to the local declaration, not the instance variable. We say that the local
declaration creates a hole in scope in the instance variable declaration.
PROJECT final slide

b) Given all this, what should the demonstration program print?
ASK
DEMO

3. In a case like this, how can one refer to the shadowed instance variable?
ASK
By qualifying the name with this - a reserved word that always refers to
the current object.
DEMO modifying program to say this.var2 in the second println
statement.

4. One place where this is commonly done is in constructors

Example: In Lab 4, you created a PongBall class with a constructor that looked
like this:

6

public PongBall(int initX, int initY, int initXV, int initYV) {
x = initX;
y = initY;
xVelocity = initXV;
yVelocity = initYV;

}
Suppose, instead, you had used the same names for the Constructor parameters
as for the instance variables - not unreasonable, since the values specified are, in
fact, the values for the instance variables. Then you could have written the
constructor this way:
public PongBall(int x, int y, int xVelocity, int yVelocity) {

this.x = x;
this.y = y;
this.xVelocity = xVelocity;
this.yVelocity = yVelocity;

}
This would work correctly, because the unqualified names appearing on the right
hand side of each of the assignments would be understood as referring to the
parameters (because of shadowing); while the qualified names on the left hand
side would necessarily refer to the instance variables.

III. Visibility

A. Another issue that arises with some Java declarations is visibility. Visibility
has to do with whether a declaration may be used outside its scope (with an
appropriate qualifier, of course).

B. In Java, parameters, local variables, and loop control variables are visible only
within their scope. In fact, there is not even any way to qualify the name
outside the scope.

C. However, identifiers declared as method names or instance variables can, in
principle, be used outside their scope by qualifying them with the name of an
object. Therefore, method and instance variable declarations carry an explicit
visibility specifier which governs how the identifier being declared can be
used. For now, you know just two visibility specifiers; there are, in fact, two
more possible that you will learn about later.
1. When a method or instance variable is declared public, a qualified

reference to the identifier declared is permissible anywhere in a program.
Most methods of a class will be declared public, because they represent
behaviors that can reasonably be invoked elsewhere in the program.

7

2. When a method or instance variable is declared private, a qualified
reference to the identifier declared is permissible only in the same class.

a) For now, you should always declare the instance variables of a class
private.

b) Instance methods are sometimes declared private, when they exist
only to help other (public) instance methods do their job.

c) Note that a private specifier does allow access from other objects of
the same class.
Example: many classes declare an equals() method that determines
whether two different objects have the same value. This is typically
done by comparing their instance variables - which requires that the
equals() method of one object access the instance variables of
another object of the same class, which is permitted.

IV. Static

A. We have already met the “static” modifier that can be used in class
declarations. What does it mean?
ASK
A feature declared static belongs to the class as a whole. All the instances
of the class share a single common copy.

B. Only methods and “top-level” variables can be declared static.

C. Anywhere within a class, static features are in scope, and can be referred to
without being qualified. But outside a class, a static feature be qualified,
typically by the class name.
Example: the class static defines the static constant PI. To refer to this
elsewhere in a program, one writes Math.PI. However, within the body of
the class, the unqualfied form can be used. For example, the following is the
actual body of the toRadians() method defined in the class:

public static double toRadians(double angdeg) {
return angdeg / 180.0 * PI;

}

8

