
CS112 Lecture: Loops

Last revised 3/11/08
Objectives:

1. To introduce some while loop patterns
2. To introduce and motivate the java do .. while loop
3. To review the general form of the java for loop.
4. To discuss pitfalls in writing loops
5. To introduce the use of continue and break in loop bodies

 Materials:

1. Projectable of priming the pump and input validation pattern examples.
2. BlueJ project with 2 versions of RelayRobot relay race: original option 2 version,

plus FixedRelayRobot, and 2 main programs, each running a three robot race.
3. Executable of Dr. Java

I. Introduction

A. In our discussion of Karel the Robot, we were introduced to the Java
repetition statements

while (<condition>)
 <statement>

AND

for (int <var> = <initial>; <var> < <final>; <var> ++)
 <statement>

As we noted at that time, these are general Java statements, and are useful for
a variety of purposes beyond moving robots around in their world. In the
case of the for statement, the Java statement is actually much more general
than the form we learned about. In addition, there is another Java repetition
statement we didn’t even discuss.

B. More recently, we talked about while loops.

C. Today, we say a bit more about while loops, talk a bit more about for loops,
and the introduce a third kind of java loop: the do .. while.

1

II. More about the while Statement

A. There are some important and useful patterns that arise in conjunction with
while loops.

1. One such pattern is the priming the pump pattern that frequently arises in
conjunction with sentinel values.

Example: Suppose we wanted to write a program to calculate the average
grade on the exam. Rather than asking the user to count the number of
grades ahead of time, we will allow the user to just enter the scores,
entering a value of -1 when finished. We’ll assume we have a GUI dialog
called inputBox with a method called getDouble() that gets a double
value (don't worry about how this is done - that's a different topic)
PROJECT
double sum = 0;
double count = 0;
double grade = inputBox.getDouble("Enter first grade:");
while (grade >= 0)
{
 sum = sum + grade;
 count ++;
 grade = inputBox.getDouble(
 "Enter next grade or - 1 if done:");
}
double average = sum / count;

a) The value -1 that the user enters to terminate the loop is called the
sentinel value.

(1) The sentinel value must be chosen to be one that cannot possibly be
a legitimate value for the program to process. Here, we assume
that a negative grade on an exam is impossible.

(2) The sentinel value can either be couched as a single value, or as a
set of values that meet some criterion. (E.g. as the example
program is written, any negative value the user enters would suffice.
This is good defensive programming.)

(3) Care must be used in choosing the sentinel value - lest surprising
things happen.

2

Example: One time a company’s payroll system stopped paying
employees with names beginning with DR and up. Upon
examination, it was found that the company had recently hired a
person whose name was DONE. Unfortunately, the authors of the
payroll program had used an employee name of “DONE” as the
sentinel for indicating the end of the list of employees!

(4) In some cases, if all possible values of input could be legitimate, a
sentinel-controlled loop cannot be used.

b) A characteristic of the sentinel-controlled loop - called the priming the
pump pattern is that the step that ultimately produces the sentinel value
(here the call to inputBox.getDouble) occurs twice:

(1) Once before the initial entry to the loop (to prime the pump)

(2) Once at the very end of the loop body (to get the value that decides
whether or not we go around again.)

(3) This is a consequence of the fact that the statement that produces
the sentinel is done one more time than the rest of the statements in
the loop body - because the last time it is done, it produces the
sentinel value and the loop body is not done.

2. Another pattern could be called the input validation pattern. Suppose
we wanted to ensure that the grade entered was never greater than 100.
PROJECT
double sum = 0;
double count = 0;
double grade = inputBox.getdouble("Enter first grade:");
while (grade >= 0)
{
 while (grade > 100)
 grade = inputBox.getDouble(

"Please enter a value not greater than 100:");
 sum = sum + grade;
 count ++;
 grade = inputBox.getDouble(
 "Enter next grade or - 1 if done:");
}
double average = sum / count;

3

a) This code actually has a problem. What is it?

If the user enters a grade greater than 100, and then, upon re-entry,
enters a negative grade, the value is processed as if it were a valid
grade.

b) To fix, we would need to validate each time input is requested

PROJECT

double sum = 0;
double count = 0;
double grade = inputBox.getDouble("Enter first grade:");
while (grade > 100)
 grade = inputBox.getDouble(

 "Please enter a value not greater than 100:");
while (grade >= 0)
{
 sum = sum + grade;
 count ++;
 grade = inputBox.getDouble(
 "Enter next grade or - 1 if done:");
 while (grade > 100) grade = inputBox.getDouble(

"Please enter a value not greater than 100:");
}
double average = sum / count;
Note: the input validation pattern is distinct from the priming the pump
pattern - e.g. we might use it without the priming the pump pattern if
we did not need the former.

III. The do ... while loop

A. One important characteristic of the while loop is that its body can be done
zero or more times. Related to that is the necessity of ensuring that the
variables involved in the condition being tested have appropriate initial value
set before encountering the loop (e.g. priming the pump).

B. There are some situations in which the logic of what is being done mandates
that the loop body be done at least once. Often, the first time through the
loop is special in some way in these cases.

4

1. Example: Consider the “Karel the Robot” steeple chase project. As you
recall, option two involved turning this into a relay race, using two robots.
It turns out that this change could be made by creating two classes of
robots, one of which extends the other and overrides one method.

Show code for runRace() method of RacerRobot and RelayRobot.
Note that the only difference is that the former runs until it is next to a
beeper, and the latter until it is next to a robot. All other methods of
RelayRobot. are inherited

2. Now consider a further modification to use three robots. The first runs to
the second, the second to the third, and the third to the finish. It would
appear at first that we can do this by the same approach, using two
classes, with two instances of the “relay” class and one of the finisher
class.
Show code for main method of Project1Modified
DEMO - run slowly near handoff to second relay robot

3. Why did this code exhibit the problem?

ASK

The program crashes because the second robot (doofus) stops where he
starts, dropping the beeper “torch” there, and leading the third robot to
try to pick up a beeper “torch” that has not yet been delivered, leading to
an error shutoff.

Recall that the runRace() loop for the relay robot looks like this:

while (! nextToARobot())
advanceOneStep();

Now consider what happens to the doofus. We want him to run until he is
next to zelda. However, when he starts out, he is still next to the anthony
(who has just handed off the beeper “torch”.) Since the
nextToARobot() test succeeds if a robot is next to any other robot, the
while loop terminates immediately, leading to the error condition.

C. Situations like this can be handled by using a different sort of loop - the
do .. while loop:

5

do
 <statement>
while <condition>

1. In this form of loop, the rules for <statement> and <condition> are the
same as for the ordinary while loop
a) The statement can either be a single statement or a compound

statement (enclosed in braces).
b) The condition can be any boolean expression. Note that, as in the

ordinary while loop, the condition being true causes us to continue
executing the loop.

2. In this form of loop, the first iteration is special, and is always done. The
loop condition is not tested until after the first iteration completes.

Our failed relay race could be handled successfully by changing the while
loop in the runRace() method of the initial robots to a do..while

SHOW CODE for runRace() method of FixedRelayRobot. Of course, we
also need to change the main program to create this new kind of robot -
SHOW Project1Fixed

DEMO

3. Note that each type of loop (while and do .. while) has its appropriate uses,
and some thought should be given as to which type of loop is most
appropriate in any given case.

EXAMPLE: Show code for runRace() method of SteepleChaseRobot. It
still uses a while loop, not a do .. while. Why?
ASK

Because we do want to allow for the possibility of this loop being done
zero times, if the robot starts out on the square containing the beeper that
marks the end of the race (as in one of the test worlds for this project).
Note that if a while loop is used here, a special case if statement (as some
students used in a previous year) is not needed.

4. For the grade averaging example we did earlier, could we change the
while loop to a do .. while ? Should we have?
ASK

6

a) Yes - a do .. while is appropriate in this case, because we cannot
compute a meaningful average if there are no grades. (We would get a
divide by zero error when we divide by count).

b) Note that changing to a do .. while does not eliminate the need for the
priming read in this case. We still have to read one more grade than
we actually use.

IV. The Java for Loop

A. The final kind of loop we need to consider is the for loop. It has the general
form:

for (< initialization > ; < test > ; < increment >)
 < statement >

where

1. Initialization is zero or more initializations of variables (separated by
commas) to be done before the loop is entered the first time.

a) It is possible to declare variables in the initialization - in which case the
scope of the variable is limited to just the loop
EXAMPLE:

for (int i = 0; i < 10; i ++)
 System.out.println(i);

// Declaration of i is no longer in effect here

b) The initialization part of the loop can be empty, but the semicolon is
still required.

2. Test is a condition to be tested before entering the loop each time (as in a
while loop)

3. Increment is zero or more assignments of variables (separated by commas)
to be done after each time through the loop body.

a) Frequently, the increment part makes use of the Java increment (++),
decrement (--), and/or shorthand assignment operators

b) However, it is also possible to increment by amounts other than +/- 1.

7

Example: the following code prints out all odd numbers between 1 and
20.

for (int i = 1; i < 20; i = i + 2)
 System.out.println(i);

c) The increment part of the loop can be empty, but the semicolon is still
required.

4. As with other kinds of loop, statement can either be a single statement or
a compound statement enclosed in braces.

B. In fact, a for loop lis exactly equivalent to the following while loop:

< initialization >
while (< test >)
{
 < statement >;
 < increment >;
}

C. Most frequently, the for loop is used for counter-controlled loops, in which
case

1. The initialization creates a counter variable and initializes it (most often to
0 or 1; sometimes to a maximum value if we want to count backwards)

2. The test checks to see if the counter variable has reached its limit yet.

3. The increment steps the counter to the next value

4. EXAMPLE: Print the square roots of numbers in the range of 1.0 up to
(but not including) 2.0 in steps of 0.1

for (double x = 1.0; x < 2.0; x += 0.1)
 System.out.println("sqrt(" +x+ ") = "+Math.sqrt(x));

DEMO using Dr. Java

5. EXAMPLE: Calculate and print the powers of 2 up to 230 (the largest
power of 2 representable as a Java int) . (Note the use of two local
variables declared in the initialization and modified by the increment)

8

for (int i = 0, n = 1; i <= 30; i ++, n *= 2)
 System.out.println("2 to the power " +i+ "=" +n);

DEMO using Dr. Java

D. Java 1.5 introduced another version of the for loop (called the enhanced for
loop) that can be used with collections, when we want to do something with
every member of a collection The book does not discuss this here, nor will
we, since we haven't met any kind of collections. We will cover it (as the
book does) when we deal with arrays.

E. As a general rule of thumb, to which there are certainly exceptions, one
should use the various types of loops as follows:

1. For indefinite iteration, where the loop body can be done zero or more
times: use a while loop

2. For indefinite iteration, where the loop body must be done at least once:
use a do ... while loop

3. For definite iteration: use a for loop

9

V. Pitfalls in Writing Loops

There are several pitfalls to watch out for when writing loops

A. Infinite loops: Always be sure that you can convince yourself that the loop
will eventually terminate - i.e. that the loop condition will eventually become
false.

B. Exact count with real numbers: beware of a loop body whose test is designed
to terminate the loop on exact equality with some value, especially when the
value is a real number (double or float)

EXAMPLE: Demonstrate the following loop with Dr. Java:

for (double d = 1.0; d != 2.0; d += 0.1)
 System.out.println(d);

(Use Reset Interactions in Tools menu to stop)

To solve the problem, we must switch the end test from requiring exact
equality to <=
DEMO

C. Off by one errors: a very common error with loops is to make a slight error
that results in the loop body being executed one too many times

EXAMPLE:

// turnLeft() three times

for (int i = 0; i <= 3; i ++)
 turnLeft();

What does this actually do?
ASK

Turns left four times.

10

VI. Using the continue and break Statements in Loops

A. All three of the standard java loops incorporate a boolean expression that is
tested once per iteration in order to decide whether to (re) enter the loop.

B. Sometimes, a condition may arise in the middle of a loop that calls for an
immediate exit from the loop. EXAMPLE: Suppose we were writing a loop
that repeatedly reads and totals the cost of individual items purchased.
Suppose further that we want to exit the loop immediately if the customer
exceeds some predetermined spending limit.

1. Java allows a break statement (just like the one we saw in conjunction with
switch) to occur inside the body of a loop. If it is executed, the loop
containing it is terminated immediately.

EXAMPLE: (Continuing the above - using pseudocode)

total = 0;
do // Note - loop terminates early if total would
 // exceed limit
{
 purchase = get next purchase amount from user;
 if (purchase + total > limit)
 {
 tell user (s)he’d go over the limit;
 break;
 }
 total = total + purchase;
 ask if user wants to enter another item
}
while (user wants to enter another)

2. In the case of nested loops, a break always exits the innermost loop
containing it. It is also possible to attach a label to a loop and exit a loop
other than the innermost one by specifying the label, but we won’t go into
this here.

C. Java also has a similar statement called continue that can be used inside a loop
to specify that we start a new iteration of the loop immediately, rather than
terminating the loop. (The loop may still terminate if the condition for staying
in it is false.)

11

D. Most texts do not discuss either continue or the usage of break within a loop,
for good reason. The misuse of these statements can easily lead to confusing
code - especially continue. In general, anytime you contemplate using one of
these, you should ask if it’s really the clearest way to write the code. Some
writers would argue that the continue statement is never the best way to write
something and so should not be used at all. (It’s a carryover from C).

EXAMPLE: The above loop written without using break:

total = 0;
overLimit = false;
do
{
 purchase = get next purchase amount from user;
 if (purchase + total > limit)
 {
 tell user (s)he’d go over the limit;
 overLimit = true;
 }
 else
 {
 total = total + purchase;
 ask if user wants to enter another item
 }
}
while (! overLimit and wants to enter another)

Which solution is clearer and more readable? ASK

Note use of comment to highlight possibility of mid-exit in first form

12

