
CS112 Lecture: Working with Numbers

Last revised January 30, 2008
Objectives:
1. To introduce arithmetic operators and expressions
2. To expand on accessor methods
3. To expand on variables, declarations of variables, and assignment to variables
4. To introduce literal and symbolic constants
5. To introduce mechanisms for reading and writing numbers using class Text and

standard IO for output and JOptionPane for input.
6. To introduce the generation of “random” numbers

 Materials:
1. BlueJ Project with ScrollingSun, BankAccount, ICanCount, ICanCountConsoleApp,

JOptionPaneDemo, Scribble

I. Operators and Expressions

A. One of the most basic and fundamental things a computer can do is to
perform arithmetic - in fact, that’s where the name “computer” comes from.

We’ve already seen one example of this:

ScrollingSun - computation of initial position and size for the sun as a
function of the size of the canvas

SHOW CODE

DEMO with 100 x 100, 1000 x 700

B. In programming languages, numerical computations are typically specified by
constructs known as arithmetic expressions. An arithmetic expression is
constructed from two basic elements:

1. operators - which specify a particular computation (e.g. the operator +
specifies the computation we know as addition).

2. operands - which are the things operated upon by the operators

Example: in the expression 2 + 3, the 2 and 3 are operands and the + is
the operator.

1

C. The set of permissible operators in Java is defined as part of the language, and
includes both arithmetic operators and operators used for other purposes.
For now, we consider only the arithmetic operators discussed in Bruce ch. 3
plus one other (there are many others).

+, -, *, /, % [not in Bruce - it stands for remainder]

1. Note that the symbol “-” actually represents two operators

a) Unary minus take a single operand (as in - 3), and stands for negation

b) Binary minus requires two operands (as in 3 - 2), and stands for
subtraction

(Actually, the symbol “+” also represents both a unary and a binary
operator, though unary + doesn’t do anything useful!)

2. Potential ambiguity in an expression is resolved by rules of operator
precedence.

a) Unary operators take precedence over binary operators

b) Multiplicative binary operators (*, /, %) take precedence over other
binary operators.

c) The additive binary operators (+, -) are the lowest precedence
operators of the ones we have looked at so far.

d) Ties between operators at the same level are broken left to right for the
operators we have considered so far. (There are some that break ties
the other way!)

Example: Order of evaluation of operators in

- a + b % c / d - e * - f - g

(Work out with class)

- a + b % c / d - e * - f - g

1 6 3 4 7 5 2 8

equivalent to

(((- a) + ((b % c) / d)) - (e * (- f))) - g

2

3. As noted in the above example, parentheses can be used to explicitly
specify precedence - either because

a) An order other than the normal one is needed
Example: (a + b) * (c + d)
or

b) There is a desire to make the order clearer to the reader

D. Possible kinds of operands in Java expressions include:

1. Constants

2. Calls to accessor methods (e.g. canvas.getWidth() in the ScrollingSun
example)

3. Variables (which we shall introduce shortly)

4. A parenthesized expression is actually treated as a single operand.
Example: 2 * (1 + 2)

II. Accessor Methods

A. Recall that, in our last lecture, we saw that behaviors of an object fall into four
broad categories.
What were they?
ASK

1. Constructors - create new objects

2. Mutators - change the state of an object

3. Accessors - provide information about the state of an object without
changing it

4. Destructors - specify what happens when an object is destroyed (not
commonly used in Java)

B. Last tiime we looked at an example of a Java class that uses quite a few
accessor methods of other objects (though defining none of its own). Let’s
look at it again
PROJECT ScrollingSun

3

1. What are the uses of accessors of other objects that appear in this class?

ASK

getWidth() [4 times] and getHeight() - all on the canvas in the first line of
begin()

getWidth() [twice - on two different objects] in last line of begin()
getWidth() on the canvas and getY() on a mouse position in the first line

of onMouseDrag()
getWidth [twice] and getHeight() on the canvas in the first line of

onMouseExit()

2. Sometimes - as here - an accessor simply tells you the value of some
component of an object’s state (e.g its width, height, or position). It is a
convention (though not a requirement) that such accessors have a name
that begins with the word “get”.

3. Other accessors may do a bit more computation, rather than simply giving
a simple value. We saw several examples of such accessors in conjunction
with robots. What were they?

ASK

facingNorth() [or South, East, West] - testing to see if a particular
component of the state has a particular value

anyBeepersInBeeperBag() - testing to see whether a particular component
of the state is non-zero

nextToABeeper() - similar

4. Sometimes, accessors may do quite a bit of computation

Example: in a BankAccount class, one might have an accessor named
computeInterest() which - in a sophisticated case - might involve
computing an average balance for a period and then multiplying by the
interest rate. Further, some accounts have rules like there is a minimum
balance that must be maintained at all times to get interest at all - so the
accessor would need to check the balance on each day to be sure it was
always high enough.

C. Let’s look at a previous example that defined some accessor methods: the
BankAccount example we used on the first day of class

PROJECT - Scroll down to bottom of class

4

1. What accessors are defined?

ASK

calculateInterest()
reportBalance()
getAccountNumber()

2. One of these simply provides access to an aspect of the state (an instance
variable), while the other does a bit of computation based on the state, and
one doesn’t do any computation in this class, though it might be
overridden to do so in a subclass. Which is which?

ASK

3. Other than a name beginning with “get” (which pertains to just one of the
methods), there is another “tip off” that indicates that a method is an
accessor. What is it?

ASK

The return type of the method is something other than void. (Mutators
are typically void)

This is not a sure thing, though, since it is possible for a mutator to also
return a value [often indicating whether the change was successful - e.g. a
mutator that deletes a specific item from a list list may return true or false
to indicate whether or not the item was actually there originally].

III. Variables

A. Methods in programs often must be able to manipulate various numeric
quantities (e.g. the method that posts interest on a savings account must
calculate the amount of interest by multiplying the current balance of the
account times the interest rate.). We refer to such quantities within a program
by using variables.

B. A variable is simply a symbolic name for a region of computer memory that
can hold a piece of information needed during a computation. Four pieces of
information characterize every variable:

1. A name
2. A type - what kind of value it can represent
3. A storage allocation - a region of memory where its value is actually held
4. A value.

5

C. Java requires that every variable used in a program be declared before it is
used.

1. Of the characteristics listed above:
The first three are fixed when the variable is declared.
The fourth can change over time - hence the name variable.

2. A variable declaration consists of a type followed by one or more variables
that are being declared (separated by commas) followed by a semicolon -
e.g.
SimpleEscaperRobot karel;
int i;

3. So far, we have seen two places where variables can be declared. (There
are actually two more kinds of variable declaration which we shall meet
later.)
ASK

a) A variable that is declared inside a class but outside any method of the
class (e.g. sun and instructions in class ScrollingSun) is called an
instance variable.

(1) Java would allow the declaration of these to occur either where they
do, or between any two methods, or at the end between the last
method and the closing brace. Usually, though, instance variables
are only declared either at the very start of a class - just after the
opening brace (as here) - or at the very end of a class - just before
the closing brace.
Where an instance variable is declared means nothing to Java, but
may help the human reader of the program.

(2) Every object constructed from a class has its own copy of each of
the instance variables. Any method can access the instance
variables of the particular object to which it is applied.
Ex: In ScrollingSun, all three methods use both instance variables.

(3) Instance variables also have a visibility specifier. Generally, this is
the reserved word private, which means that the variable can only
be accessed inside the class - e.g.

6

class Foo
{

private int bar;
...

}

Foo f = new Foo();
f.bar <-- not allowed

This is an example of an important OO concept known as
encapsulation.

b) We have also seen that a formal paremeter is a variable that is declared
in a method header. Such a declaration only applies to that one
method.

4. An instance variable declaration may optionally include initialization for
the value of the variable - e.g.
int i = 42;

If an instance variable is not initialized when it is declared, it is given a
default value - e.g. 0 for an integer.

5. Once a given name has been declared as the name of a variable, it cannot
be used for a different variable in the same scope.

a) That is, a class cannot contain two instance variables with the same
name.

b) A method cannot contain two parameters with the same name.

c) It is possible for a method to have a parameter with the same name as
an instance variable of the class to which it belongs. In this case, within
that one method the use of the name refers to the parameter, not the
instance variable.

6. The requirement that variables be declared stands in contrast to some
languages (e.g. JavaScript, BASIC) that allow implicit declaration of
variables - i.e. simply using a name as a variable causes it to be declared.

D. The value of a variable is set or modified by an assignment statement which
has the following form:
<variable> = <expression>

7

Examples:

x = 42;
y = x + 1;
x = x + 1;

E. It is important to note that a programming language variable differs in some
significant ways from a mathematical variable.

1. A mathematical variable typically stands either for a fixed value that is
currently unknown - as in

x2 + 2x + 1 = 0
or for all possible values - as in the identity

x2 + 2x + 1 = (x + 1)2

2. A programming language variable stands for something that can change
over time.

3. The distinction is perhaps best illustrated by a statement like
x = x + 1
which is mathematically impossible but perfectly normal in a program
(where it means “replace the current value of x by a new value that is one
greater than its current value”)

4. This distinction is related to a distinction between the mathematical and
programming language meaning of “ = ”.

a) In mathematics, “=” is declarative - it is an assertion that two things
are equal, or perhaps is used in a context where we are asking whether
two things are equal

b) In programming languages like Java, “=” is imperative - it is an active
verb that stands for assignment - i.e. it says “make this equal to”.

c) Because of the possibility of confusion between the mathematical and
programming language meanings of “=”, some languages (e.g. Pascal,
Ada), use “:=” instead of “=” for assignment. (Java, however, uses
“=” for assignment, with the expectation that the user will remember
the difference between the “Java meaning” and the “mathematical
meaning”.)

8

IV. Constants

A. We have already indicated that one kind of operand that can appear in an
expression is a constant.

B. Actually Java (and many programming languages) supports two kinds of
constants.

1. A literal constant is one whose value is explicit.
2. A symbolic constant is a symbol that might otherwise look like a variable,

but whose value has been fixed at the point where it is declared.

C. Java supports literal constants of various types

1. boolean: we have already met the two boolean constants, false and true
2. int: a string of decimal digits. It is also possible to represent int constants

using octal or hexadecimal notation. (One warning: if the first digit of a
multi-digit integer is 0, it is taken as octal, not decimal!)

3. There are a number of other types of constant which we will learn about
later.

D. Symbolic constants are explicitly declared in the program

1. They are declared the same way as instance variables are, except that

a) The declaration includes the words static final.

b) The visibility may be either private or public, depending on whether
or not the constant is meaningful outside the class.

c) The value must be specified at the point of declaration (since it can’t be
specified later!) The value can either be a literal, or an expression
whose values are constants.
Example:
public static final int MINIMUM_AGE = 18;

2. It is standard practice (though not required by the compiler) that symbolic
constants be given names that use all uppercase letters, with underscores
used to separate words.
Note: the examples in the chapter in the Bruce book do not follow this
convention, though most of the authors’ examples do

9

3. Why should we use symbolic constants?

a) Readability - a constant with a good name is more understandable than
a “magic number” - especially it the magic number is either not readily
recognized or could have several possible interpretations.

b) Correctness - declaring a symbolic constant protects against
accidentally mistyping a constant in one place if it is used several times.
(If the user mistypes the name of a symbolic constant, the compiler will
almost certainly catch the error)

c) Maintainability - if the value needs to change, it’s easier and more
secure to change the constant declaration rather than each use. (Not
an issue with constants like PI, but a likely issue with a constant like
TAX_RATE).

E. As we shall see, a number of standard Java library classes define constants -
e.g. the class java.lang.Math defines Math.PI and Math.E.

V. Output and Input of Numbers

A. Many programs follow the paradigm
read some input
do some computation
produce some output
We have spent most of our time discussing how we do computation. We
now need to talk about how we can do input and output.

B. Unfortunately, this topic (especially input) is complicated by the fact that
human users want to do input and output using strings of characters while
computers represent numbers internally in binary form. Thus, outputting a
number involves converting the internal binary form of a number to a string
of characters, and inputting a number involves the reverse.

1. Output is sometimes complicated by the need to control the format of the
output - e.g. if printing a dollar amount, we want to use exactly two
decimal places even if they are not strictly necessary to represent the
value - e.g. as a dollar amount, we want to print 3 as 3.00.

10

2. Input is further complicated by the fact that the number the user enters
may be malformed - e.g. if the user types something like:
one
l (Lower-case l, not the digit 1)
O (Upper-case O, not the digit 0)
For now, we will not talk about how to handle this - that comes later.

C. Thus, the problem of outputing and inputting numbers actually has two
components - converting between internal (binary) and string representations
of a number, and outputting or inputting the character string.

1. If format is not an issue, there are some easy mechanisms for converting
an internal binary number to a human-readable string in a reasonable way.

a) One method, provided by the objectdraw package, is to make use of
the fact that Text objects can be created to display numbers as well as
character Strings.
Example: ICanCount
DEMO
SHOW CODE
Modify to set font size to 24 (add setFontSize(24) to begin())

b) Another method is to use the standard library variable System.out,
which has methods print() and println()

(1) print() simply writes the value it is asked to print. If several prints
are done in a row, the output from one begins where the previous
output leaves off.

(2) println() outputs a newline after printing the value

Example: I CanCountConsoleApp

DEMO - run using main

SHOW CODE

2. When one just wants to label numeric output. it is possible to use the
operator +, which stands for addition when used with numbers, to convert
numbers to character strings and concatenate them.

Example:

11

Modify ICanCount to label the count with the string “The count is ” -
note space.

DEMO

(This can also be used with System.out.print(ln), but we won’t
demonstrate)

3. On the input side, the book talks about how to do this quite a bit later in
the text. However, we will look at one way to do this now, using a
standard Java classes called JOptionPane and Integer. (For now, treat this
as boilerplate code)

Example: JOptionPaneDemo

DEMO

SHOW CODE
.
DEMO what happens if a malformed number (e.g. “one”) is typed - we
will discuss dealing with issues like this later in the course.

VI. Random Numbers

A. The book discussed some mechanisms in the objectdraw library for creating
“random numbers”

In fact, these are not truly random - they really on an algorithmic technique
known as a pseudorandom number generator.

However, the results are indistinguishable from truly random results.

B. We will look at a simple example to illustrate the mechanism provided by
object draw: A class written by the books’ authors (though not included in
their book) called Scribble

DEMO

SHOW CODE

12

