```
Homework Answers Chapter 2
p.75 – 1, 3, 5, 8, 13, 16, 17, 21, p.77 - 1
p. 75 #1
a.
Get values for b and h
Set the value of the area to (b * h / 2)
Print the value of area
Stop
b. (let's assume that the interest rate is entered as a decimal number -10\% is entered as
.1)
Get values for B and I
Set value of interest to (B * I)
Set value of B to (interest + B)
Print the value of interest and B
Stop
c.
Get values of M and S (average speed)
Set value of time to (M / S)
Print the value of time
Stop
p. 75 #3
Get values for Exam1, Exam2, Exam3 and Final
Set value of average to (Exam1 + Exam2 + Exam3 + 2 * Final) / 5
Print the value of average
Stop
p. 75 #5
a.
If (y = 0) then
       Print "Unable to perform the division"
Else
```

Set value of temp to x / y Print the value of temp

```
If (radius > 1 OR radius = 1) then

Set value of area to (3.14159265358979323846...* radius * radius)

Set value of circumference to (2 * 3.14159265358979323846...* radius)

Else

Set value of circumference to (2 * 3.14159265358979323846...* radius)
```

p. 75 #8

```
Set the value of i to 1
Set the value of total to 0
While (i < 14 or i = 14) do step 1 through step 3
Step 1: get a value for score
Step 2: set the value of total to (total + score)
Step 3: set the value of i to (i + 1)
Get a value for final
Set value of average to (total + final + final) / 16
Print the value of average
Stop
```

p. 75 #13

```
Get values for NAME, N_1...N_{10000} and T_1....T_{10000}
2
       Set the value of i to 1 and set the value of count to 0
       While (i \le 10000) do steps 4 through 7
3
               if NAME is equal to the ith name on the list N<sub>i</sub> then
4
                       print the telephone number of person, Ti
5
                       set the value of count to (count + 1)
6
7
               add 1 to the value of i
8
       if (count = 0) then
               print the message "Sorry, this name is not in the directory"
9
       Else
               print "A total of " count "occurrences were located"
10
       stop
```

p. 76 #16

a. While (i > n) do

The first entry in the list of numbers will always be reported as the largest.

b. While (i < n) do

The last number in the list of numbers will never get considersation as the largest.

c. While (i = n) do

If the value of n happens to be 2 then the while loop will be executed 1 time – otherwise the while loop will not be executed.

p. 76 #17

a. If A_i = largest so far then...

In this case, the largest will always be reported as the value found in the first place in the list. The value of largest will only be changed if a value in the list is the same as the first value – therefore largest will always bet he first value.

b. If $A_i < largest$ so far then...

In this case, the smallest value is found.

Using the correct relational operation is essential to properly control loops and if statements. Often an incorrect relational operation will lead to a "runtime" error in a program.

p. 76 #21

Caesar cipher: each letter is replaced by the kth letter ahead of it in the alphabet

Input:

- 1. string of letters ending with \$ (delimiter)
- 2. value of k

Output:

- 1. encoded text
- 1 Enter the message string:
 - a. set value of n to 0
 - b. enter a value for letter
 - c. While (letter is not \$) do steps d through f
 - d. set the value of M(n) to letter
 - e. add 1 to n
 - f. enter a value for letter

```
2
       enter the value of k
3
       set value of i to 0
3
       While (i < n) do steps 4 through 7
4
               if the (numeric value of M(i) + k) is greater than 26 then
5
                      display the letter associated with the numeric value (numeric value
                      of M(i) + k - 26
              otherwise display the letter found at (numeric value of M(i) + k)
6
7
               add 1 to i
10
       stop
p. 77 #1
   Input:
       1. starting point for the search
       2. a step size
       3. accuracy desired
       4. function (this can also be built into the algorithm. In other words, not entered)
1
       Enter input values:
               enter a value for start
              enter a value for step
       b.
              enter a value for accuracy
       c.
               enter a value for f (the function)
2
       set value of x to start
3
       while (the absolute value of size is greater than accuracy) do steps 4 through 7
4
               set value of before to x
5
               while (f(before) * f(x)) is greater than 0) do step 6
6
                      add size to x
7
               multiple size by -.1
8
       display (before + x)/2
Python code
def f(x):
     return x + 2
start = 40
size = -3
accur = .0000000001
x = start
while abs(size) > accur:
     before = x
```

```
while f(before) * f(x) > 0:
    x = x + size
size = size * -.1
print (before + x)/2
```