
/*
 * CoffeeCan.java
 *
 * This is an OO version of the "Coffee Can" problem first suggested by
 * David Gries in _The Science of Programming_ page 165:
 *
 * "A coffee can contains some black beans and white beans. The
 * following process is repeated as long as possible:
 *
 * Randomly select two beans from the can. If they have the same color,
 * throw them out, but put another black bean in. (Enough extra black beans
 * are available to do this.) If they are of different colors, place the
 * white one back in the can and throw the black one away.
 *
 * Execution of this process reduces the number of beans in the can by one.
 * Repetition of this process must terminate with exactly one bean in the
 * can, for then two beans cannot be selected. The question is: what, if
 * anything, can be said about the color of the final bean based on the
 * number of white beans and the number of black beans initially in the can?"
 *
 * The class has an invariant which is partially given below. Discovering the
 * rest of the invariant is the key to answering the question.
 *
 * Each method is documented with preconditions and postconditions. To avoid
 * saying the same thing twice, information in the @param tags should be
 * considered part of the precondition, and information in the @return tags
 * should be considered part of the postcondition.
 *
 * Copyright (c) 2000 - Russell C. Bjork
 */

import java.io.*;

/** Representation for Gries' coffee can.
 *
 * Invariant: there is at least one bean in the can and
 * the number of beans of each color is >= 0 and
 * ????
 */
public class CoffeeCan
{
 /** Main program. Repeatedly ask user for maximum number of beans of each
 * color in can, and then play one instance of the "coffee can" game,
 * reporting activity to System.out. Stop when max = 0.
 *
 * NOTE: By entering a negative value, the user can cause the precondition
 * of the constructor to be violated. What happens in this case?
 */
 public static void main(String [] args) throws IOException
 {
 BufferedReader input = new BufferedReader(new InputStreamReader(System.in));

 System.out.print("Maximum number of beans of each color: ");
 int max = Integer.parseInt(input.readLine());

 while (max != 0)
 {
 // Play one game

 CoffeeCan theCan = new CoffeeCan(max);
 String initialContents = theCan.reportContents();
 System.out.println("Initial contents: " + initialContents);

1

 while (theCan.numberOfBeans() > 1)
 {
 System.out.println();
 try
 {
 Thread.sleep (5 * 1000);
 }
 catch (InterruptedException e)
 { }

 String roundResults = theCan.playOneRound();
 System.out.println("Results of round: " + roundResults);

 String currentContents = theCan.reportContents();
 System.out.println("Current contents: " + currentContents);
 }

 String finalColor = theCan.lastBeanColor();
 System.out.println("Color of the final bean is " + finalColor);
 System.out.println();

 // Ask user for parameters for next game, or 0 to quit

 System.out.print("Maximum number of beans of each color - 0 to quit: ");
 max = Integer.parseInt(input.readLine());
 }

 System.exit(0);
 }

 /** Constructor
 *
 * Precondition: max >= 1
 *
 * @param max maximum number of beans of each color that can
 * initially be in the can
 *
 * Postconditions: can contains between 1 and max white beans and
 * between 1 and max black beans.
 *
 */
 public CoffeeCan(int max)
 {
 whiteBeans = (int) (1 + max * Math.random());
 blackBeans = (int) (1 + max * Math.random());
 }

 /** Report current contents of the can
 *
 * Preconditions: none
 * Postcondition: can contents are unchanged
 *
 * @return string describing the current contents of the can
 */
 public String reportContents()
 {
 return "Can contains: " + whiteBeans +
 " white beans and " + blackBeans + " black beans - total = " +
 (whiteBeans + blackBeans);
 }

2

 /** Report number of beans currently in the can
 *
 * Preconditions: none
 * Postconditions: can contents are unchanged
 *
 * @return total number of beans in can
 */
 public int numberOfBeans()
 {
 return whiteBeans + blackBeans;
 }

 /** Play one round of the "coffee can" game. Draw two beans and put
 * one back, as described by the rules above.
 *
 * Precondition: there is more than one bean in the can
 * Postcondition: the number of beans in the can is reduced by 1, in
 * accordance with the rules of the game
 *
 * @return string describing what took place
 */
 public String playOneRound()
 {
 String first = chooseBean();
 if (first.equals("White"))
 whiteBeans --;
 else
 blackBeans --;

 String second = chooseBean();
 if (second.equals("White"))
 whiteBeans --;
 else
 blackBeans --;

 String putBack;
 if (first.equals(second))
 {
 putBack = "Black";
 blackBeans ++;
 }
 else
 {
 putBack = "White";
 whiteBeans ++;
 }

 return "Drew: " + first + ", " + second + ". Put back: " + putBack;
 }

3

 /** Choose a single bean to draw
 *
 * Preconditions: there is at least one bean in the can
 *
 * Postconditions: Return value is either "White" or "Black",
 * and there is at least one bean in the can of that color
 *
 * @return color of bean to draw
 *
 */
 private String chooseBean()
 {
 if (whiteBeans > 0 && blackBeans > 0)
 if (Math.random() < 0.5)
 return "White";
 else
 return "Black";

 else if (whiteBeans > 0)
 return "White";

 else // must be the case that blackBeans > 0
 return "Black";
 }

 /** Report the color of the final bean
 *
 * Preconditions: the can contains exactly one bean
 *
 * Postcondition: can contents are unchanged
 *
 * @return color of the one bean in the can
 *
 */
 public String lastBeanColor()
 {
 if (whiteBeans == 1)
 return "White";

 else // must be that blackBeans == 1
 return "Black";
 }

 // Number of beans of each kind currently in the can

 private int whiteBeans;
 private int blackBeans;
}

4

