
CPS122 - OBJECT ORIENTED SOFTWARE DEVELOPMENT

An Example of a Simple Class Hierarchy

BankAccount

SavingsAccount CheckingAccount

/**
 * Representation for a bank account
 *
 * @author Russell C. Bjork
 * @version November 18, 2009
 */
public abstract class BankAccount
{
 private final int accountNumber;
 protected Customer owner;
 protected int currentBalance; // Represented in cents
 private static int nextAccountNumber = 1;

 /**
 * Constructor for objects of class BankAccount
 *
 * @param owner the owner of this account
 *
 * The account number will be set to the first available unused number
 * The balance will be set to zero
 */
 public BankAccount(Customer owner)
 {
 accountNumber = nextAccountNumber ++;
 this.owner = owner;
 owner.addAccount(this);
 currentBalance = 0;
 }
 /**
 * Deposit money
 *
 * @param amount the amount to deposit (in cents)
 */
 public void deposit(int amount)
 {
 currentBalance += amount;
 }

1

 /**
 * Withdraw money
 *
 * @param amount the amount to withdraw (in cents)
 * @exception IllegalArgumentException if insufficient balance on hand
 */
 public void withdraw(int amount)
 {
 if (currentBalance < amount)
 throw new IllegalArgumentException("Insufficient balance for withdrawal");
 currentBalance -= amount;
 }

 /**
 * Report current balance.
 * @return current balance, formatted neatly as dollars and
 * cents, with a dollar sign and decimal point
 */
 public String reportBalance()
 {
 String result = "$" + currentBalance/100 + ".";
 int cents = currentBalance % 100;
 if (cents < 10)
 result += "0";
 result += cents;
 return result;
 }

 /** Accessor for account number
 *
 * @return account number for this account
 */
 public int getAccountNumber()
 {
 return accountNumber;
 }
}

2

**
 * Representation for a checking account
 *
 * @author Russell C. Bjork
 * @version November 18, 2009
 */
public class CheckingAccount extends BankAccount
{
 /**
 * Constructor for objects of class CheckingAccount
 *
 * @param owner the owner of this account
 *
 * The account number will be set to the first available unused number
 * The balance will be set to zero
 */
 public CheckingAccount(Customer owner)
 {
 super(owner);
 }

 /**
 * Withdraw money - override of method inherited from BankAccount. If the
 * balance is insufficient, but the customer has a savings account with
 * a sufficient balance, withdraw the money from savings instead; otherwise
 * use the method inherited from the superclass.
 *
 * @param amount the amount to withdraw (in cents)
 * @exception IllegalArgumentException if insufficient balance on hand
 */
 public void withdraw(int amount)
 {
 if (currentBalance < amount && owner.getSavingsAccount() != null &&
 owner.getSavingsAccount().currentBalance >= amount)
 owner.getSavingsAccount().withdraw(amount);
 else
 super.withdraw(amount);
 }
}

3

/**
 * Representation for an interest-bearing savings account
 *
 * @author Russell C. Bjork
 * @version November 18, 2009
 */
public class SavingsAccount extends BankAccount
{
 private static double annualInterestRate;

 /**
 * Constructor for objects of class SavingsAccount
 *
 * @param owner the owner of this account
 *
 * The account number will be set to the first available unused number
 * The balance will be set to zero
 */
 public SavingsAccount(Customer owner)
 {
 super(owner);
 }

 /**
 * Pay interest for one month.
 */
 public void payInterest()
 {
 if (currentBalance >= MINIMUM_AMOUNT_FOR_INTEREST)
 currentBalance += (int) (currentBalance * annualInterestRate / 12.0);
 }

 /**
 * Modify the interest rate
 *
 * @param newRate the new annual interest rate
 */
 public static void setAnnualInterestRate(double newRate)
 {
 annualInterestRate = newRate;
 }

 /** The minimum balance an account can have and still receive interest
 */
 public static final int MINIMUM_AMOUNT_FOR_INTEREST = 500;
}

4

