
CS122 Lecture: Encapsulation, Inheritance, and Polymorphism

Last revised 1/06/10
Objectives:
1. To review the basic concept of inheritance
2. To introduce Polymorphism.
3. To introduce the notions of abstract methods, abstract classes, and interfaces.
4. To introduce issues that arise with subclasses - protected visibility, use of the super() 

constructor
5. To discuss the notion of multiple inheritance and Java’s approach to it

 Materials: 
1. Demo and handout of BankAccount hierarchy
2. Dr. Java for demos + file OverrideDemo.java
3. Employees demo program - Handout and online demo, projectable versions of code 

snippets

I. Introduction

A. Throughout this course, we have been talking about a particular kind of 
computer programming - object-oriented programming (or OO).  As an 
approach to programming, OO is characterized by three key features 
(sometimes called the “OO Pie”).
1. Polymorphism
2. Inheritance
3. Encapsulation

(We’ll actually talk abouit these in reverse order!)

B. Although we have not used the term per se, we have already made use of 
encapsulation.  
1. In OO systems, the class is the basic unit of encapsulation.  A class 

encapsulates data about an object with methods for manipulating the data, 
while controlling access to the data and methods from outside the class so 
as to ensure consistent behavior.

2. This is really what the visibility modifier “private” is all about.  When we 
declare something in a class to be private, we are saying that it can only be 
accessed by methods defined in that class - that is, it is encapsulated by the 
class and is not accessible from outside without going through the 
methods that are defined in the class.
 

C. In this series of lectures,we will focus on inheritance and polymorphism.
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II. Inheritance

A. One of the main uses of inheritance is to model hierarchical structures that 
exist in the world.

Example: Consider people at Gordon college.  Broadly speaking, they fall into 
two categories: employees and students.

1. There are some features that both employees and students have in 
common - whether a person is an employee or a student, he or she has a 
name, address, date of birth, etc.

2. There are also some features that are unique to each kind of person - e.g. 
an employee has a pay rate, but a student does not; a student has a gpa, 
but an employee does not, etc.

3. We can represent this hierarchical structure this way:

Person

Employee Student

B. In Java, inheritance is specified by the reserved word extends.  For example, 
we could declare classes Person, Employee, and Student as follows:

class Person {
...

}

class Employee extends Person {
...

}

class Student extends Person {
...

}
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1. With this structure, the classes Employee and Student inherit all the 
features of the class Person.

2. In addition, each of the classes Employee and Student can have features of 
its own not shared with the other classes.

C. Basic terminology: If a class B inherits from a class A:

1. We say that B extends A or B is a  subclass of A - So we say Employee 
extends Person, or Employee is a subclass of Person.

The term subclass comes from the mathematical notion of subset - the set 
of all Employees is a subset of the set of all Persons.

2. We say that A is the base class of B or the superclass of B - So we say 
Person is the base class of Employee, or the superclass of Employee.

The term superclass comes from the mathematical notion of sets as well - 
the set of a Persons is a superset of the set of all Persons.

3. This notion can be extended to multiple levels - e.g. if C extends B and B 
extends A, then we can say not only that C is a subclass of B, but also that 
it is a subclass of A.  In this case, we sometimes distinguish between direct 
subclasses/base class and indirect subclasses/base class.
Example: suppose we had the following hierarchy

Person

Employee Student

Faculty Staff
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Now we could say that Faculty is direct subclass of Employee, and an 
indirect subclass of Person, etc.

D. Crucial to inheritance is what is sometimes called the law of substitution:

1. If a class B inherits from (extends) a class A, then an object of class B 
must be able to be used anywhere an object of class A is expected - i.e. 
you can always substitute a B for an A.

Thus, in the above example, the inheritance structure says that an 
Employee can always be used anywhere that a Person is needed.

2. This notion is what allows us to call B a subclass of A or A a superclass of 
B.  The set of all “B” objects is a subset of the set of all “A” objects - 
which potentially includes other “A” objects that are not “B” objects - 
e.g.

The meaning of “B extends A”

The set of all A objects

The set of all B objects

3. This relationship is sometimes expressed by using the phrase “is a” - we 
say a B “is a” A.

4. Remembering the law of substitution will help prevent some common 
mistakes that arise from misusing inheritance.  

a) The “is a” relationship is similar to another relationship called the 
containment relationship, or “has a”.  Sometimes inheritance is 
incorrectly used where containment should be used instead.

b) Example: suppose we were building a software model of the human 
body, and we wanted to create a class Person to model a whole person, 
and a class Arm to model a person’s arms.  The correct relationship 
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between Arm and Person is a “has a” relationship - a Person “has a” 
Arm (actually two of them), not “is a” - we cannot say that an Arm is 
a Person, because we cannot substitute an Arm everywhere a Person is 
needed. 

5. As used in the OO world, inheritance can also be used for specialization - 
e.g. in a graphics system we may have a class Square that is a subclass of 
the class Rectangle - meaning that Square is a specialization of Rectangle, 
being a Rectangle with equal sides.   This is consistent with the law of 
substitution - anywhere a rectangle is needed, a square can be used.
Of course, this is a different concept from the way we speak of inheritance 
in terms of human relationships.  For example, I inherited my mother’s 
hair color - but that does mean that I’m a specialization of my mother!

E. A key aspect of inheritance is that a subclass ordinarily inherits all the features 
of its base class.  For example, consider the following example of a class 
hierarchy for bank accounts (siimilar to the example we looked at earlier, but 
modified to incorporate two different kinds of bank account- checking and 
savings - with a common base class, and with some other changes as well.)

BankAccount

SavingsAccount CheckingAccount

A Java implementation this hierarchy might look like the following:

HANDOUT

Observe the following:

1. The classes SavingsAccount and CheckingAccount inherit the features of 
BankAccount

a) Since a BankAccount has an owner and a balance, so does a 
SavingsAccount or a CheckingAccount.
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b) Since a BankAccount has methods deposit(), reportBalance(), and 
getAccountNumber(), so does a SavingsAccount or a 
CheckingAccount.  

2. The constructors for SavingsAccount and CheckingAccount must invoke 
the constructor for BankAccount “passing up” the owner.  This is done 
via super(owner) at the start of each.

3. Savings account adds features that an ordinary BankAccount does not 
have - e.g. payInterest() and setInterestRate().

4. CheckingAccount overrides the withdraw() method of BankAccount.

a) In the special case where the checking account balance is insufficient 
for the withdrawal, but the customer has a savings account with 
enough money in it, the withdrawal is made from savings instead.

b) In all other cases, the inherited behavior is used by invoking 
super.withdraw(amount).  

5. Certain features of BankAccount are declared protected (rather than 
private).  This specifies that the subclasses may access them, though other 
classes may not.

a) Note how the payInterest() method of SavingsAccount needs to make 
use of the inherited feature current balance, and the withdraw() 
override in CheckingAccount0 needs to make use of both the inherited 
features currentBalance and owner.

b) On the other hand, accountNumber remains private in BankAccount, 
which precludes the subclasses from using it. 

F. In designing a class hierarchy, methods should be placed at the appropriate 
level.  For example, in the BankAccountExample:

1. deposit(), reportBalance(), and getAccountNumber() are defined in the 
base class BankAccount, and so are inherited by the two subclasses.

If they were defined in the subclasses, we would have to repeat the code 
twice - extra work and an invitation to inconsistency should we need to 
make modifications.

2. On the other hand, payInterest() and setInterestRate() are defined in 
SavingsAccount, because they are not relevant for CheckingAccounts.
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3. Withdraw() is defined in BankAccount and overridden in 
CheckingAccount.  Why is this better than simply defining separate 
versions in CheckingAccount and SavingsAcccount?

ASK

Although CheckingAccount does override the inherited method, it does 
make use of it in most cases via the super.withdraw() call.  This would not 
be possible if separate versions were defined in CheckingAccount and 
SavingsAccount, with no base version in BankAccount.

III. Polymorphism

A. The above example also illustrates polymorphism, which we now want to 
define more formally. In brief, because of the law of substitution, it is possible 
for a variable that is declared to refer to an object of a base class to actually 
refer at run time to an object of that class or any of its subclasses.

B. Example: Continuing with our BankAccount example

1.  suppose we declared a variable as follows:

BankAccount account;

2. We could now make it refer to either a CheckingAccount or a 
SavingsAccount - i.e. (assuming a Customer variable named aardvark 
exists) either of the following would be legitimate:

account = new CheckingAccount(aardvark);
or

account = new SavingsAccount(aardvark);

3. If, however, we tried to perform 

account.withdraw(some amount);  

with an amount that exceeds the balance,  the way it would handle the 
operation would depend on its actual type

a) If it were actually a SavingsAccount, it would reject the operation in all 
cases

b) If it were actually a CheckingAccount, it would see if its owner had a 
savings account with sufficient balance.
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C. Another example: Given the following declarations (DEMO with Dr. Java - 
file OverrideDemos.java)
class A 
{ 

public void saySomething(int i)
{ System.out.println(i); }

}
class B extends A
{

public void saySomething(int i)
{ System.out.println(4); }

}

1. Load OverrideDemo.java, compile, then type the following at the 
interactions window)
A someA;
B someB;
all of the following are legal
someA = new A();
someA = new B();
someB = new B();
someA = someB;

However, the following is not legal:
someB = new A(); // Illegal!

2. Further, when a message is sent to an object, the method used to handle 
the message depends on the actual type of the object, not its declared 
type.  Let’s look at what this distinction means

a) Suppose that we did the assignment 
someA = new A();
And now performed the the test
someA instanceof B
the instanceof test would fail (An A is not necessarily a B, though the 
reverse is true) and no output would be printed.
DEMO

8



b) However, if we did the assignment
someA = new B();
and then performed the same test, the test would succeed because 
instanceof looks at the actual class of the object referred to, which may 
be the declared class or one of its subclasses.
DEMO

c) By the way - in both cases the test
if (someA instance of A)
would succeed, because a B is an A.
DEMO

d) likewise, if we did 
someB = new B();
someB instanceof A would succeed since a B is an A.
DEMO

3. We saw earlier that a consequence of this is that a class can override a 
method of its base class, and the method that is used depends on the actual 
type of the receiver of a message.
Example
someA = new B();
someA.saySomething(-1);
What will the output be?
ASK
42 - since someA actually belongs to class B, the class B version of 
saySomething()  is the one that is used.

4. Recall that, when a class has a method with the same name and signature 
as an inherited method in its base class, we say that the inherited method is 
overridden.  
The fact that the overridden method may be used in place of the base class 
method depending on the actual type of the object is called dynamic 
binding or dynamic method invocation.   E.g., in the previous example the 
declared type of someA was A, but the actual type was B, so when the 
saySomething() method was called, the B version was used.
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(BTW: Not all programming languages handle this the same way.  For 
example, in C++ dynamic binding is only used if you explicitly ask for it)

5. Overridden methods must have the same signature as the inherited 
method they override - otherwise we have an overload, not an override.  

EXAMPLE: Suppose, in the above, I instead defined subclass C with a 
method called saySomething(short i), instead of the method whose 
parameter is of type int..  

class C extends A
{

public void saySomething(short i)
{ System.out.println(42); }

}

What I actually have in this case is an overload rather than an override,

a) Now suppose I write
new C().saySomething(-1);
What will the output be?
ASK
-1
DEMO

b) However, I would get the other method method (hence output of 42) if 
I used  new C().saySomething((short) -1)
DEMO 

6. As we have already seen, when a base class method is overridden in a 
subclass, the base class method becomes invisible unless we use a special 
syntax to call it:
super.<methodname> ( <parameters>)
EXAMPLE: Suppose I include a method in B like the following:

public void speak()
{ saySomething(0); }

Then issued the command
new B().speak();
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what will the output be?
ASK
42 - Since we use the B version of saySomething().  To get the A 
version, I could code the body of the method as
super.saySomething(0);
DEMO

IV. Abstract Methods, Abstract Classes, and Interfaces

A. Returning again to our BankAccount example, would it be meaningful - in 
this case - to have a BankAccount object that is neither a CheckingAccount 
nor a SavingsAccount?
ASK

1. In a case like this, we can declare the base class BankAccount to be 
abstract.  (Note in code).  An abstract class cannot have an object that 
belongs to it, but not to one of its subclasses, which is what we desire in 
this case.

2. It is not, however, always the case that a base class should be abstract.  
Suppose our bank created a new kind of savings account called a 
HighBalanceSavingsAccount which has a minimum balance of $10,000 
but pays a higher interest rate.  We might picture this as follows:

BankAccount

SavingsAccount CheckingAccount

HighBalance
SavingsAccount

11



In this case, though BankAccount would be an abstract class, 
SavingsAccount would not - it is meaningful to have a SavingsAccount 
that is not a HighBalanceSavingsAccount.

B. There are other issues involved in creating an abstract class as well.  
For example: Suppose we were developing a payroll system for a company 
where all the employees are paid based on the number of hours worked each 
week.  

1. We might develop an Employee class like the following:
PROJECT

public class Employee
{
    public Employee(String name, String ssn, double hourlyRate)
    {
         ...
        this.hourlyRate = hourlyRate;
    }
    public String getName()
    ...
    public String getSSN()
    ...
    public double weeklyPay()
    {
        // Pop up a dialog box asking for hours worked this week
        return hoursWorked * hourlyRate;
        // Actually should reflect possible overtime in above!
    }
    ...
    private String name;
    private String ssn;
    private double hourlyRate;
}

Now suppose we add a few employees who are paid a fixed salary.  

a) We could create a new class SalariedEmployee that overrides the 
weeklyPay() method, as follows:  (PROJECT)

class SalariedEmployee extends Employee
{
  public SalariedEmployee(String name,String ssn,double annualSalary)
  ...
  public double weeklyPay()
  { return annualSalary / 52; }
  ...
  private double annualSalary;
}
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b) It would now be possible to create an array of Employee objects, some 
of whom would actually be SalariedEmployees - e.g. (PROJECT)

Employee [] employees = new Employee[10];
employees[0]=new SalariedEmployee(“Big Boss”,“999-99-9999”,100000.00);
employees[1]=new Employee(“Lowly Peon”, “111-11-1111”, 4.75);
...

c) Further, we could iterate through the array and call the weeklyPay() 
method of each, without regard to which type of employee each 
represents, and the correct version would be called: (PROJECT)

for (int i = 0; i < employees.length; i ++)
printCheck(employees[i].getName, employees[i].weeklyPay());

Note that, in each case, the appropriate version of weeklyPay() is called 
- e.g. for Big Boss, the SalariedEmployee version is called and a check 
for 1923.08 is printed; for Lowly Peon a dialog is popped up asking for 
hours worked and the appropriate amount is calculated based on a rate 
of 4.75 per hour.  This is another example of polymorphism.

2. But this is not a good solution.  Why?

ASK

Because SalariedEmployee inherits from Employee, every 
SalariedEmployee has an hourly rate field, even though it is not used. (The 
hourlyRate field is private, so it is not inherited in the sense that it is not 
accessible from within class SalariedEmployee; however, it does exist in 
the object and is initialized by the constructor - so a value must be 
supplied to the constructor even though it is not needed!)  

a) This can be seen from the following Class diagram, which uses a 
language-independent notation known as UML (Unified Modelling 
Language)
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- annualSalary : double

Employee

SalariedEmployee

- name
- ssn
- hourlyRate : double
+Employee(String,
       String, double)
+ getName() : String
+ getSSN(): String
+ weeklyPay(): double

+ SalariedEmployee
    (String,String,double)
+ weeklyPay(): double

(1) Each box stands for a class.  The arrow with a triangle at the head 
connecting them indicates that the class SalariedEmployee extends 
Employee - i.e. a SalariedEmployee “isa” Employee.

(2) Each box has three compartments.  The first contains the name of 
the class (and potentially certain other information about the class as 
we shall see later).  The second contains the fields of the class (the 
instance and class variables).  The third contains the methods.

(3) Each field and method is preceeded by a visibility specifier.  The 
possible specifiers are:

(a) + - accessible to any object - this corresponds to Java public
(b) - - accessible only to objects of this class - this corresponds to 

Java private
(c) # - accessible only to objects of this class or its subclasses - which 

corresponds to Java protected.  Note that, in this example, name 
and ssn are not made protected - the subclass has access to them 
through public methods getName() and getSSN().

(4) Each field has a type specifier, and each method has a return type 
specifier. 

(5) Each method has type specifiers for its parameters (its signature). 
A subclass includes all the fields of its superclass (though they may 
not be accessible in the subclass if they are declared private).  Thus, 
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a SalariedEmployee object has four fields - name, ssn, and hourly 
rate (inherited from Employee) and annualSalary (defined in the 
class)

b) In this case, each object that belongs to SalariedEmployee has an 
hourlyRate field, which is not meaningful.

c) What would be a better solution?
ASK
Create a class hierarchy consisting of a base class called Employee and 
two subclasses - one called HourlyEmployee and one called 
SalariedEmployee.  Only HourlyEmployees would have an hourlyRate 
field, while SalariedEmployees would have an annualSalary field.  This 
is expressed by the following diagram:

- hourlyRate: double

SalariedEmployeeHourlyEmployee

+ HourlyEmployee
    (String,String,double)
+ weeklyPay(): double

Employee

- name
- ssn

+Employee(String,
       String)
+ getName() : String
+ getSSN(): String

- annualSalary: double
+ SalariedEmployee
   (String,String,double)
+ weeklyPay(): double

Notice that what we have done is to leave in the base class only those 
fields and methods which are common to the two subclasses.  We have 
also eliminated the need for an hourly rate parameter in the Employee 
constructor - we only specify the name and ssn.   We likewise have 
eliminated the weeklyPay() method, since this is different for each 
subclass, and each implementation uses a field specific to that subclass.
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d) However, this solution introduces a new problem.  The following code, 
which we used above, would no longer work: (PROJECT AGAIN)

Employee [] employees = new Employee[10];
...
for (int i = 0; i < employees.length; i ++)
    printCheck(employees[i].getName, employees[i].weeklyPay());

Why?

ASK

There is no method called weeklyPay() declared in class Employee, 
though there is such a method in its subclasses.  Since the array 
employees is declared to be of class Employee, the code 
employees[i].weeklyPay()

will not compile.   (The compiler is not aware of a class’s subclasses 
when it compiles code referring to it - and, in general, cannot be aware 
of its subclasses since new ones can be added at any time.)

e) How might we solve this problem?   Note that the type of the array 
has to be Employee, since individual elements can be of either of the 
subclasses.
ASK
We could solve this problem by adding a weeklyPay() method to the 
Employee class.  But what should its definition be?  As it turns out, it 
doesn’t matter, since we know that it will be overridden in the 
subclasses.  So we could use a dummy implementation like: 
(PROJECT)

public double weeklyPay()
{ return 0; }

However, there are all kinds of problems with this - it is confusing to 
the reader, and if we accidentally did create an object directly of class 
Employee (which we would be allowed to do), we would get in trouble 
with the minimum wage laws!

3. To cope with cases like this, Java allows the use of abstract methods.

a) An abstract method uses the modifier abstract as part of the 
declaration, and has no implementation - the prototype is followed by a 
semicolon instead.  It serves to declare that a given method will be 
implemented in every subclass of the class in which it is declared.
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Example: We could declare an abstract version of weeklyPay in class 
Employee as:

public abstract double weeklyPay();

b) A class that contains one or more abstract methods must itself be 
declared as an abstract class.  (The compiler enforces this):

(1) Example: (PROJECT)

public abstract class Employee
{

...

(2) An abstract class cannot be instantiated - e.g. the following would 
now be flagged as an error by the compiler

new Employee(...)

This is because an abstract class is incomplete - it has methods that 
have no implementation, so allowing the creation of an object that is 
an instance of an abstract class could lead to an attempt to invoke a 
method that cannot be invoked.

(3) A class that contains abstract methods must be declared as abstract.  
The reverse is not necessarily true - a class can be declared as 
abstract without having any abstract methods.  (This is done if it 
doesn’t make sense to create a direct instance of the class.)

c) Note that, in general, an abstract class can contain a mixture of 
ordinary, fully-defined methods and abstract methods.  
EXAMPLE: The Employee class we have used for examples might 
contain methods like getName(), getSSN(), etc. which are common to 
all kinds of Employees - saving the need to define each twice, once for 
HourlyEmployee and once for Salaried Employee.

d) Note that a subclass of an abstract class must either:

(1) Provide definitions for all of the abstract methods of its base class.

or

(2) Itself be declared as abstract, too.

e) Sometimes, a non-abstract class is called a concrete class.
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4. Distribute, go over, handout of Employee class hierarchy.

a) Abstract class - Employee - and method weeklyPay() 

b) final methods - getName(), getSSN() in Employee

c) Call to super() constructor in constructors for HourlyEmployee and 
SalariedEmployee

d) Overrides of toString() in HourlyEmployee and SalariedEmployee, 
with explicit use of superclass version in implementation

e) Polymorphic calls to weeklyPay()

f) Demo: run class EmployeeTester.

C. Suppose we take the notion of an abstract class and push it to its limit - i.e. to 
the point where all of the methods are abstract - none are defined in the class 
itself.  Such a class would specify a set of behaviors, without at all defining 
how they are to be carried out.

1. In Java, such an entity is called an interface, rather than a class.  

a) Its declaration begins 

[ public ] interface Name ...

An interface is always abstract; the use of the word abstract in the 
interface declaration is legal, but discouraged.

b) An interface can extend any number of other interfaces, but cannot 
extend a class.

c) All of the methods of an interface are implicitly abstract and public; 
none can have an implementation.  The explicit use of the modifiers 
abstract and/or public in declaring the methods is optional, but 
discouraged
EXAMPLE: Inside the declaration of an interface, the following are 
equivalent

public abstract void foo(); // Discouraged style
public void foo(); // Discouraged style
abstract void foo(); // Discouraged style
void foo();
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And the following is illegal:

void foo()
{ anything .... }

d) Interfaces can also declare static constants.  Any variable declared in an 
interface is implicitly public, static, and final, and must be initialized at 
the point of declaration.  The explicit use of the modifiers public, static, 
and/or final in declaring a constant is legal, but discouraged.

e) Interfaces cannot have:

(1) Constructors
(2) Instance variables
(3) Non-final class variables
(4) Class (static) methods

2. A Java class can implement any number of interfaces by including the 
clause

implements Interface [, Interface ]...

in its declaration.

A class that declares that it implements an interface must declare and 
implement each of the methods specified by the interface - or must be 
declared as abstract - in which case its concrete subclasses must implement 
any omitted method(s).

3. Why does Java have interfaces as a separate and distinct kind of entity 
from classes?

a) An interfaces is used when one wants to specify that a class inherits a 
set of potential behaviors, without inheriting their implementation.

b) Interfaces provide a way of dealing with the restriction that a class can 
extend at most one other class.  A class is allowed to extend one class 
and implement any number of interfaces.
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V. Miscellaneous Issues

A. The final modifier on methods

1. When a class is going to be extended, it may be that some of its methods 
should not be subject to being overridden.  In this case, they can be 
declared as final.
EXAMPLE: If the class Employee has a getName() method for accessing 
the employee’s name that cannot meaningfully be overridden, the method 
could be declared as

public final String getName()
{
    return name;
}

2. Declaring a method as final when it cannot be overridden allows the 
compiler to perform some optimizations that may result in more efficient 
code, so adding final to a method declaration where appropriate is 
worthwhile.

B. The Final Modifier on classes

1. Just as an individual method can be declared final, so an entire class can be 
declared final.  (E.g. public final class ...).

2. A final class cannot be extended.  This serves to prevent unwanted 
extensions to a class - e.g. the class java.lang.System is final.

C. Multiple inheritance.

1. We have talked about a lot of things that Java can do.  We now must 
consider one capability present in many OO languages that Java does not 
support: multiple inheritance.

2. Sometimes, it is meaningful for a given class to have two (or more) direct 
base classes.  A classic example of this is a system for maintaining 
information about students at a college or university, which might have 
the following structure:
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Person

EmployeeStudent

+ getGPA() : double weeklyPay() : double

Now suppose we wanted to add a new class TA.  Such a class would 
logically inherit from both Student and Employee, since a TA is both, and 
since the methods getGPA and weeklyPay are both applicable.  Many OO 
languages would allow this - Java does not.  

3. Multiple inheritance is actually something of a controversial feature in OO.  
Allowing it introduces all kinds of subtleties.  To cite just one example - if 
we did have TA inherit from both Student and Employee, then a TA is a 
Person in two different ways.   

a) Does this mean that there are two copies of the Person information 
stored - one for TA as Student and one for TA as Employee?  

b) Does this mean that a TA can have two names - one as a Student and 
one as an Employee?

c) It turns out that dealing with issues like this is non-trivial - one reason 
why Java opted to not allow multiple inheritance.

4. Note that, although a Java class cannot inherit implementation from more 
than one class, it can inherit behavior from more than one class, by means 
of interfaces.  (One reason for including interfaces as a separate construct 
in Java was to allow this sort of limited multiple inheritance.)
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