
CPS221 Lecture: Deadlock 

last revised July 30, 2014 
Objectives

1. To introduce the concept of deadlock
2. To discuss approaches to deadlock prevention, avoidance, and detection/

resolution

 Materials: 

1. Projectable of simple example of a self-deadlocking program
2. Projectable of Figure 7.9 in Silberschatz, Galvin and Gagne 8th ed
3. Demo of Lab 6 software; basic synchronization plus version using lookahead to 

prevent deadlock
4. Projectable of example trajectory
5. Projectable of trajectory space annotated with resource needs
6. Projectable and handout of banker’s algorithm
7. Projectable of three RRAG's
8. Projectable of deadlock detection algorithm

I. Introduction

A. One of the major responsibilities of any multi-user operating system is 
managing the sharing of resources by the various processes.

We now want to  look at one of the problems that can easily arise 
when multiple processes compete for the same resource:  The problem 
of deadlock.

B. Definition

1. A process is said to be deadlocked if it is waiting for an event that 
can never occur.
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2. A system is said to be deadlocked if it contains one or more  
deadlocked processes.  The deadlock may be partial (some 
processes can still proceed) or total (no process can proceed.)

C. Deadlock can arise in many different ways

1. The following Java program illustrates how a process can deadlock 
itself:

PROJECT

class DeadlockDemo
{
	 public static void main(String [] args)
	 {
	 	 Object foo = new Object();
	 	 while (true)
	 	 {
	 	 	 try 
	 	 	 { 
	 	 	 	 synchronized(foo)
	 	 	 	 {
	 	 	 	 	 foo.wait();
	 	 	 	 }
	 	 	 }
	 	 	 catch(InterruptedException e) {}
	 	 }
	 }
}

The program waits for the object foo to be notified - but since too 
is a local variable in main, no other code even sees it!   (Of course, 
one would hardly write a program so blatantly incorrect; but 
similar problems can easily be embedded unwittingly in a more 
complex program.).

2. Often, deadlock arises when two processes compete for resources.  
As an example, the suppose a computer has a DVD drive and a 
printer.  One process is using the DVD drive and needs to use the 
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printer before it is through with DVD tape drive.   (Perhaps it 
needs to print something from the DVD).  The other process is 
using the printer and needs to use the DVD drive before it is 
through with the printer.   (Perhaps it needs to include something 
from the DVD in what it is printing).   

3. Deadlock can arise when processes communicate by passing 
messages.  For example, suppose two processes at different 
locations are communicating over a channel that is subject to 
interference.  Process B is currently waiting for a message from 
process A.  Suppose A sends a message to B and then goes into a 
wait state awaiting a reply from process B.  If the message is 
somehow lost, then B will wait forever for A's message that was 
lost and A will wait forever for B's reply to the message which B 
will never receive.

4. Another place where deadlocks can occur is in connection with 
shared access to common data structures.  For example, suppose 
that a bank has various ATM's scattered throughout the city, and 
suppose that each ATM is handled by its own process on a central 
computer.  When an individual starts to perform a transaction on a 
particular account, the record for that account must be locked until 
the transaction is complete.  Competition for access to a record can 
occur if a husband and wife simultaneously use different ATMs to 
access a joint account, or if an ATM access occurs while a central 
batch process is posting the day's checks to the account in 
question.  We could envision a deadlock occurring as follows:

a) Mr. Jones arrives at an ATM desiring to transfer money from 
his savings account to his checking account. 

b) As his request is being processed, the ATM first obtains a lock 
on the record for his savings account and is now ready to 
request  a lock on the checking account.
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c) At that moment, on another ATM, Mrs. Jones requests a transfer 
from checking to savings.  The process for her ATM gets a lock 
on the checking account record and now attempts to get a lock 
on the savings account record.

It might be argued that a scenario like the above is highly 
improbable.  That is certainly true.  But it is the very   
improbability of such a scenario that makes it so insidious.  If 
the potential for a deadlock such as this were present in a 
system, it would probably not manifest itself during system 
testing unless the testers were specifically conscious of looking 
for such a problem.  But, given enough time, the undetected 
bug could show up, causing two ATM's to  lock up.  In this 
case, the cause of the problem could probably be readily found 
if the operator who clears it knows what to  look for; but 
imagine a similar problem occurring in a process control system 
running a nuclear power plant.  (The deadlock may never be 
discovered if the computer is ruined by the resulting 
meltdown!) 

5. Deadlocks can also arise in connection with the invisible resources 
of the system.

a) Example: When a physical IO operation to a device like a disk 
is done, a buffer must be set aside in memory to contain the 
data being transferred.  For various reasons, many systems use 
a pool of buffers in system memory space for this.  Thus, a user 
request  to perform an IO operation (say write) is implemented 
as follows:

- Allocate a buffer in system space.
- Copy the data from the user's memory to the system buffer.
- Start the IO transfer.

Unfortunately, this operation, while not involving the explicit 
allocation of a device, does involve an implicit allocation of a 
buffer from a pool of buffers maintained by the system.  If no 
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buffer is available, then the process must wait for one.  Thus, in 
a system that performs IO through system buffers a  process can 
become deadlocked waiting to perform an IO operation to a 
device it already owns.

b) Example: Many operating system calls - such as opening a file - 
require that an appropriate entry be made in some system table. 
(In the case of opening a file, the entry gives the name of the file 
and the process which has it open to prevent possible access 
conflicts if another process tries to access the same file.)  

The system tables are often implemented as linked lists of small 
buffers obtained from a system pool.  Again, if no space is 
available to store the new table entry, then the process must wait.

c) Example: Deadlock can occur without any specific activity by 
user processes.  For example, one early multi-processor 
operating system handled accounting as follows:

(1)When a CPU finished performing some service for a user 
process, it would write a record to an internal accounting log 
stored in  shared memory.

(2)When the accounting log became full, a request would be 
generated for the first available processor to write it out to a 
disk file.

(3)Deadlock occurred in this system (as originally designed) if 
all of the CPU's were working on user processes when the 
internal accounting log became full.  As each CPU finished 
its task for its user, its last step would be to write the 
accounting data, and then it would become free to take on 
some other task.  But if the log was full, it would have to 
wait until some other free CPU could write the data out to 
disk.  But if all the CPU's were serving users, none could 
ever become free to flush the internal log until it could write 
its user accounting data to the internal log! 
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D. The initial work on deadlock was done in conjunction with the 
requesting of resources like card readers, tape drives, and printers in a 
multi-user computer.  While many of these resources are no longer 
present in modern computers, some of the classic examples of 
deadlock are couched in terms of them - but the same principles can 
be used in dealing with deadlock in other situations, as you will 
discover in lab and as we will discuss in conjunction with databases.

In general, theoretical work on deadlock views a system as consisting 
of a set of resources which are partitioned into classes of identical 
resources, such that any resource of a given class can satisfy any 
request for a  resource of that class.

1. Examples: CPU’s, blocks of memory, physical devices such as 
printers, etc.

2. It is important that all the resources in a class be regarded as 
interchangeable.  If this is not the case, then we have multiple 
classes.

Example : suppose a system has two printers, one in the basement 
and one on the 9th floor.  These would probably be considered as 
belonging to two distinct resource classes, rather than as being two 
instances of the one class “printer”.

3. In many of our examples we will work with situations in which 
each class contains only a single resource; but this is only for 
clarity of example and is not generally true.

E. We need to carefully distinguish deadlock from a related problem: 
starvation.  

1. A process is said to be starving if it waits forever for a resource 
that is denied it due to some bias in the allocation policies of the 
system - i.e. what it is waiting for could happen, but never does.
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2. Poorly-designed deadlock avoidance schemes can inadvertently 
cause  a process to starve.  For example, if a certain scheme 
arbitrarily gives priority for some resource to processes with an 
odd process  number, and there is much competition for this 
resource, then an  even-numbered process might never be able to 
obtain it.  The  process is not deadlocked, because the event it is 
waiting for CAN occur - it just never does occur.  But the effect on 
the starving process is the same as if it were deadlocked.

II. Four conditions necessary for deadlock

A. Deadlock involving shared resources can only occur if four conditions are 
true.  Three of these are preconditions that must be present in the system 
design, and the fourth is the actual condition that constitutes deadlock:

1. Mutual exclusion: The resources in question can each be used by 
only one process at a time. (Precondition)

2. Hold and wait: A process that is waiting for a resource that it needs  
may hold onto other resources it has been granted, making them 
unavailable to other processes.  (Precondition)

3. No pre-emption: Once a process has been allocated a shared 
resource, it cannot be forced to yield the resource until it has 
finished using it. (Precondition).

4. Circular wait: there exists a set of processes p0 .. pn such that:

a) p0 is waiting for a resource held by p1.
b) p1 is waiting for a resource held by p2.
c)  ...
d)  pn is waiting for a resource held by p0.

(When this condition actually arises, the system is deadlocked.  
The processes p0..pn are each deadlocked, though any other 
processes on the system may proceed.)
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B. The three preconditions are related to the nature of the resources 
themselves:

1. Resources can be classified into three broad types:

a) Shareable resources can be used by more than one process at 
the same time.  

(1)Examples: read-only disk files, shared code. 

(2)Note that shareable resources cannot give rise to deadlock  
because condition 1 does not hold for them.

b) Pre-emptible resources cannot be used by more than one process  at 
a time, but a pre-emptible resource can be taken away from one 
process and granted to another with minimal cost

(1)The classical example is the CPU, which can be given to a 
new  process by storing the registers in the PCB for the 
current process and loading the registers from the PCB of 
the new  process.  Pre-emption of the CPU is the basis for 
multiprogramming.

(2)Main memory is generally pre-emptible by copying an entire 
process, or a portion of it (to disk and loading a new process 
or portion of it  in its place. 

(3)Since a pre-emptible resource does not satisfy condition 3, it 
cannot give rise to deadlock.  (There is a subtlety here, 
though, in connection with a resource like memory.  If no 
space is available in the swapping/paging file, then an 
attempt to pre-empty memory may have to wait until a slot 
becomes free!  The resource being waited for is a slot in the 
file, but the immediate cause of the wait is the preemption 
attempt.)
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c) Serially re-usable resources can be used by only one process at 
a time.  Only when one process has finished its use of the 
resource can another process use it.

(1)Example: sequential IO devices such as  printers,

(2)Example: internal buffers maintained by the operating 
system.

(3)Example: Writeable disk files, or portions of disk files. (In 
general, only one process may have write access to a given 
record in a file at any one time.  But in practice it is not 
always possible to lock just one record, so when a  process is 
granted write access, the OS may have to lock out all write 
access by other processes to the entire block or cluster 
containing the record or - in some systems - may have to 
lock out write access to the entire file.

(4)These are the resources that can participate in deadlocks.

2. One approach to preventing deadlocks involves an attempt to 
convert a serially reusable resource into some other type.  For 
example, many systems maintain a queue of print requests.  
Though the printer can only service one request at a time, multiple 
processes can submit print requests, where they wait their turn 
until they can be printed.  The effect is that the printer looks to 
processes like a shareable “virtual printer”.  

C. Schemes for dealing with deadlock attack one or the other of these 
conditions.

1. Deadlock prevention schemes operate by ensuring that deadlock 
can never occur.  They do so by making one of the three 
preconditions  false, or by guaranteeing that the fourth condition 
cannot possibly arise.
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2. Deadlock avoidance schemes operate by making sure that, while 
deadlock could occur in principle, the fourth condition does not 
occur in practice.  This is done by recognizing and avoiding 
situations that  would lead to a circular wait happening.

3. Deadlock detection schemes operate by looking for the   
occurrence of the fourth condition and taking measures to break up 
the deadlock.

D. We can illustrate these schemes in terms of a more familiar situation - 
traffic deadlock.

PROJECT Figure 7.9 in Silberschatz, Galvin, and Gagne 8th ed and/or 
DEMO Deadlock Lab software

1. What could we do in this situation to prevent deadlock?

ASK

A simple solution would be to build an overpass for one of the 
intersections.  (Just building one would take care of the problem!)

2. What could we do in this situation to avoid deadlock?

ASK

We could require that a vehicle not enter an intersection until it can 
see the road clear its full length on the other side.

Though this would probably work in the physical world, it could 
fail if vehicles arrive from all four directions simultaneously, see 
the road ahead clear, and enter the intersection simultaneously - or 
if all four vehicles wait for another to first!

DEMO using Lab software

3. Deadlock detection and recovery could be handled by a traffic 
policeman coming out and do something like making one of the 
deadlocked trucks drive off the road.
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III.Deadlock prevention schemes

A. Conceptually, the cleanest way to deal with deadlock is to prevent it 
by ensuring that one of the conditions for deadlock does not hold.

B. In practice, however, this may impose restrictions that may not be 
tolerable - so working systems often combine deadlock prevention for 
some resources with one of the other two schemes for others.

C. Theoretically, deadlock can be prevented by denying the mutual 
exclusion pre-condition.  This is usually not possible in practice - 
though the use of print queues to convert serially reusable devices into 
seemingly shareable virtual devices could be regarded as an attack at 
this point.

(We could also regard it as a multiplication of the number of printers 
to the point where each process can have all it needs.)

D. Deadlock can be prevented by denying the "hold and wait" 
precondition.

1. One approach is as follows: Require that a process request all the 
resources that it ever needs in one single request at one time. The 
system will not grant any resource in the list until it can grant all of 
them.

2. A less restrictive approach is to allow a process to request 
resources only when it is currently holding no resources.  Thus, if a 
process needs a new resource, it must first yield all the resources it 
has and then put in its request (which might include a request for 
the reallocation of a resource it just gave up.)

3. Problems with this approach:
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a) It can lead to processes holding resources when they don't need 
them, thus reducing resource utilization.  This is especially serious 
if a process does not know what resources it will actually need for 
a given run until it has started working on the data. With this 
scheme, it must request up front all the resources it MIGHT need.

b) A process that needs several "popular" resources might starve 
while processes that need a smaller number of these resources 
keep taking them away.

E. Deadlock can be prevented by denying the "No Pre-emption" condition.

1. One way to implement this is to stipulate that any process that is 
forced to wait for some resource will have any resources it already 
possesses taken away from it.  The wait for a single resource is 
then converted into a wait for a list of resources including both 
those it had and the one it now needs.

2. Again, this can be made somewhat less severe.  A process that is 
waiting for some resource can hold them as long as another 
process does not need them.  But if another process should request 
a resource held by the waiting process, the resource is pre-empted 
and the waiting process must now wait for both the original 
resource it wanted and the resource that was taken away.

3. This scheme also has problems:

a) It only works if the resources are pre-emptible.  If a process has 
printed output on a printer and is waiting for some other 
resource before it can generate more output, then the printer 
really cannot be taken away without messing up the output.

b) This scheme can also lead to starvation for a process that needs 
several "popular" resources at the same time, since it may keep 
losing the resources it gets because they don't all become 
available at the same time.
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F. Deadlock can be prevented by making circular wait impossible. 

1. One approach that is often practical relies on something called 
resource ordering or ranking.  With each resource, we associate a 
unique number.   We require that a process request resources in 
increasing order of resource number - i.e. if the process needs 
resources 3 and 5, it must request them in the order 3, 5.

Example: This was the approach we used in the Dining 
Philosophers problem. In the version that did not deadlock, 
chopsticks were requested in chopstick number order - which 
meant that most philosophers could request them in the left then 
right, but the last philosopher had to request them in the order right 
then left because his right was 0 and his left was 4.

2. When there are multiple similar resources, an entire class of 
resources may be given the same number, with the additional 
provision that if a process needs multiple resources of the same 
type it must request them all at once - it cannot ask for  a second 
“type N” resource if it already has a “type N” resource.

3. Again, this restriction can be loosened; if a process releases all the 
high-numbered resources it holds it may be allowed to request a 
lower-numbered resource.  It still cannot request a resource of a 
given type if it already holds one or more resources of that type. 
That is, the number of the resource it requests must be strictly  
greater than the number of any it holds. 

4. To see that this protocol does, in fact, make circular wait 
impossible, we use a proof by contradiction.  Assume that the 
resource ordering protocol is being used, and a circular wait has 
resulted. This means that we have a process p0 waiting on a 
resource held by p1, and p1 is waiting on a resource held by p2 ... 
process pn waiting on a resource held by p0
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a) Let r0 be the resource held by p0 which pn is waiting for, r1 be 
the resource held by p1 that p0 is waiting for ... rn be the 
resource held by pn that p(n-1) is waiting for.

b) Let f0 be the number associated with resource r0, f1 be the 
number associated with r1 etc.

c) Now since p0 is waiting for a resource r1 while holding a resource 
r0, it must be the case that f0 < f1.  In like manner, f1 < f2 etc. So we 
have f0 < f1 < f2 ... < fn - and therefore, by transitivity, f0 < fn.

d) But we also have process pn requesting a resource r0 held by p0, 
while holding a resource rn.  Therefore, it must be that f0 > fn.

e) Since this is a contradiction, our assumption that circular wait 
could arise is false. QED

5. Of course, this scheme has problems too:

a) The order of resource numbering may prove arbitrary and 
inconvenient.  This is not necessarily too serious of a problem, 
since there are often natural ways of numbering resources.  For 
example, processes generally use input devices (such as a DVD 
reader) before output devices (such as printers), etc.  

b) The order of numbering can force processes to request 
resources  before they need them, thus reducing resource 
utilization. 
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IV.Deadlock Avoidance Schemes

A. Another approach to deadlock is to configure a system so that 
deadlock could theoretically occur, but then avoid deadlock by not 
granting any resource request that could ultimately lead to deadlock.  
The basic idea is this: ordinarily, the operating system grants resource 
requests from processes on the basis that if the requested resource is 
available, then the process gets it, otherwise it waits.  We modify this 
so that, in some cases, a process is forced to wait for a requested 
resource even though  the resource is available.

B. One way to see how this works is with trajectories.

1. The following example shows the evolution of two processes over 
time:

PROJECT

P1 P2
 

a) When P1 is running on the CPU, the trajectory moves up; when 
P2 is running, it moves to the right.  When both are running at 
the same time (multiple CPU's or one doing IO while the other 
computes) it moves diagonally.

b) The trajectory can never move to the left or down.

2. We could construct such trajectories for any number of processes - 
but the drawing would have one dimension per process.  Thus, 
with three  processes we would have a 3D drawing etc.

15



3. We can now notate on the drawing the resources each process needs at 
various points in its history:

PROJECT

P2 needs R2 only
    P2 needs both R1 and R2
        P2 needs R1 only

P1 needs R2 only

P1 needs both R1 and R2

P1 needs R1 only*

a) The region shaded  is an impossible region.  The trajectory  
cannot enter this region, because the resource requests of both  
processes cannot simultaneously be satisfied within it.

b) The region shaded  is an unsafe region.  If the trajectory  
enters this region, the system must deadlock.  Note, however, 
that the unsafe region is not itself deadlocked.  Both processes 
can progress until the trajectory reaches the boundary with the  
impossible region.  At this point only one can progress, until the 
trajectory reaches the corner where both must stop.

c) There are two broad ways open for deadlock free trajectories - one to 
the left of the unsafe/impossible regions, and one below them.

d) A deadlock avoidance algorithm, would anticipate the 
inevitable  deadlock resulting from entrance into the unsafe 
region, and would prevent entrance into it.  In particular, if the 
processes were at the point labeled by the '*' (with P1 holding 
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R1), a request from P2 for R2 would be delayed even though R2 

is available, since that would setup inevitable deadlock.

C. The above has illustrated the general approach taken by all deadlock 
avoidance algorithms: some knowledge about the future behavior of a 
process is used to prevent disastrous choices.  In this case, the 
knowledge is that P1, once holding R1, would need R2 before it could 
progress far enough to release R1.

D. The best-known deadlock avoidance algorithm is the banker's 
algorithm.

PROJECT and HANDOUT - Walk through

1. The advance knowledge required is the maximum number of units 
of each type of resource that the process will claim at any one time.

a) This can be declared explicitly up front by the programmer; or 
it may be determined implicitly from the job control language 
in a batch environment.

b) Any process which requests an allocation beyond its pre-
declared maximum will be aborted.

c) Of course, it cannot be the case that the declared maximum for 
resource for any process is greater than the total number of that 
resource available on the system to begin with!

2. Walk through how the system decides whether to grant a request 
coming in from some process.  The basic approach is to check 
three things:

a)  Check to be sure that the process does not request more 
resources than its declared maximum.  (If so, the process must 
be aborted)

b)  Check to be sure that the process is not requesting more 
resources of any type than are currently available.  (If so,  the 
request must be delayed.)
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c)  Check for safety by seeing if, even with the request having 
been granted, all processes can complete in some order by 
repeating the following until all processes have been shown to 
be able to complete.

(1)Find a process that can surely complete (its outstanding 
needs is not greater than the number of unallocated 
resources for any resource type)

(2)Pretend it gives back all the resources it has to the system 
(which makes more resources available for some other 
process)

d)  Grant the request only if safe to do so.

3. Example: A system has 2, 5, and 1 unit respectively of resource 
types 0, 1, 2.  Three  processes are running, but as yet hold no 
resources.  Their declared maximum needs are 1,2,1; 1,4,1, and 
1,1,1.  

max	
 1 2 1
	
 1 4 1
	
 1 1 1

allocated	
 0 0 0
	
 0 0 0
	
 0 0 0

(So need = max)	

	


available	
 2 5 1
 
Consider the following series of requests:

a) P0 requests 	
 1 2 0
(legal and possible)	


Simulate allocation	
 1 2 0
	
 0 0 0
	
 0 0 0

Need becomes	
 0 0 1
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 1 4 1
	
 1 1 1

Work	
 1 3 1	


All processes can complete in the order P0, P1, P2

Grant the request

Allocated resources becomes	
 1 2 0
	
 0 0 0
	
 0 0 0

Available becomes	
 1 3 1

b) P1 requests 	
 1 2 0
(legal and possible)
Simulate allocation	
 1 2 0
	
 1 2 0
	
 0 0 0
Need becomes	
 0 0 1
	
 0 2 1
	
 1 1 1
Work	
 0 1 1
- P0 can  complete - so Work becomes	
 1 3 1
- P1 can complete - so Work becomes	
 2 5 1
- P2 can complete
grant the request
Allocated resources becomes	
 1 2 0
	
 1 2 0
	
 0 0 0
Available becomes	
 0 1 1

c)  P1 requests 0 2 0
(legal but not possible, so delay the request - allocated and 
available do not change)
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d) P2 requests 0 0 1
(legal and possible)
Simulated allocation	
 1 2 0
	
 1 2 0
	
 0 0 1
Need becomes	
 0 0 1
	
 0 2 1
	
 1 1 1
Work	
 0 1 0
No process can be guaranteed to complete, so this request is 
unsafe and so must be delayed.  (allocated and total available do 
not change)

E. Problems with deadlock avoidance schemes:

1. Knowledge of the future behavior of a process is required. This 
may be hard to come by in some cases - especially interactive 
systems.

2. This approach can be unduly conservative - making processes wait 
because a deadlock might occur though, in fact, none would even 
if the request were granted.

3. Deadlock avoidance depends on a knowledge of how many 
resources of  each type are available.  Should a resource 
unexpectedly fail, a deadlock could still occur.

4. The deadlock avoidance algorithm is time-consuming.  If the 
number of processes is n and the number of resources is m, then 
the banker's algorithm is O(mn2):  The  loop in the check for safety 
will have to be executed n times if the allocation is safe.  On each  
iteration, we have to find a process that could complete - which 
potentially requires examining all n and may typically require 
looking at n/2 if there is only one that can complete.  Examining a 
process to see if it could complete requires looking at its need for 
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all m resources.  Since the banker's algorithm must be run for each 
resource request generated, the overhead can be quite high on a  
large system.  (Note: there is a simpler algorithm that can be used 
if all the resources are unique - i.e. each "class" contains exactly 
one resource.  This is still O(n2), however.

5.  In some cases, deadlock avoidance algorithms can lead to 
starvation. 

V. Deadlock Detection

A. We have seen that both deadlock prevention and deadlock avoidance 
schemes have a price associated with them that may not be acceptable.  

B. Another approach to deadlocks is possible if, in a given system, their 
occurrence  is determined to be relatively rare.  We can allow 
deadlocks to occur from time to time, detect the fact that a deadlock 
has occurred, and undo it.  This approach raises two issues: 

1. How to we determine that a deadlock has occurred

2. How to recover from it.

C.  One way to visualize whether a deadlock exists in a system is through 
the use of a Resource Request and Allocation Graph (RRAG).   

1. In such a graph:

a) Processes are represented by circles.

b) Resource types are represented by rectangles.  The number of 
instances of a given type of resource is represented by a dot 
within the rectangle.
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c) There is an edge from a process to a resource type if the process 
is currently requesting a resource of that type.  (This is called a 
request edge)

d) There is an edge from a resource to a process if the process 
currently has a resource of that type.    (This is called an 
allocation edge)

Example: The following RRAG depicts a system with two 
instances of resource type R0 and one instance of resource type 
R1, plus two processes.  P0 has one instance of resource type 
R0 and is requesting resource type R1.  P1 has the instance of 
resource type R1.
PROJECT

2.  A cycle in such a graph may indicate the presence of deadlock.

Example: Suppose P0 obtains one more instance of R0 before 
requesting an instance of R1, and then P1 requests an instance of 
R0.  The graph would now look like this; the cycle involving P0 
and P1 indicates a deadlock.
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PROJECT

3. On the other hand, the presence of a cycle in the graph does not 
necessarily indicate a deadlock if there is some process not part of 
the cycle that can release a resource that breaks up the deadlock.

Example: Suppose there is a third process in the system (P2) and it 
is the one having the second instance of R0, rather than P0:

PROJECT

Now, though P0 and P1 are currently deadlock, the deadlock will 
be broken if P2 releases its instance of R0

D. The existence of deadlock can also be determined by an algorithm that 
is similar to the Banker’s algorithm, but simpler

PROJECT Deadlock Detection Algorithm
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1. There is no need for prior knowledge about what a process might 
do.

2. Like the banker's algorithm, this algorithm is O(mn2).  But unlike  
the banker's algorithm, we do not have to run it for every resource  
request.  We may schedule it to run periodically, or run it when any 
process has waited more than a specified interval for a resource.

3. As before, there is a simpler algorithm O(n2)) that can be used if 
all resources are unique.

E.  Deadlock Recovery

1. This is the more difficult problem.  One or more processes are 
going to have to be forced to yield resources involuntarily.

2. The simplest approach is to abort one or more processes and then 
restart them.  Of course, the work they have done is lost.  Also,  
this may not be possible if a process has made changes to a 
database.

(e.g. suppose a process is posting checks against checking 
accounts. Restarting the process from the beginning could lead to 
the same check being debited to your account twice!)

3. A less severe approach is to make use of checkpoints in the run of  
a process.  Many large computations incorporate the notion of  
dumping the state of the process at periodic checkpoints so that, in 
the event of a system crash, the process can be safely restarted 
from  the last checkpoint rather than from scratch.  In such a 
situation, it may be possible to roll a process back to a checkpoint.

4. One other issue that is important is that if deadlocks are frequent 
then care must be taken that the algorithm for selecting a victim 
process results in starvation of some process.
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VI.Combined approaches

A. We have seen that, in practice, no one method of dealing with 
deadlocks is without problems.  

B. Therefore, most practical systems use a combined approach.

1. For example, resource ordering may be used with resources for 
which it is possible to establish a natural order.

2. Deadlock detection and recovery may be used with resources that 
rarely result in deadlock.

3. Etc.
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