
CPS221 Lecture: Threads
last revised 8/28/14

Objectives

1. To introduce threads in the context of processes
2. To introduce UML Activity Diagrams

 Materials:

1. Diagram showing state of memory for a process
2. Diagram showing code being executed by a thread and corresponding stack
3. Diagram showing thread states
4. Diagram showing single-threaded vs multi-threaded process
5. UnthreadedRacers and ThreadedRacers to demonstrate + code to project
6. AWThreadDemo.java to demonstrate
7. AWTBlockDemo.java
8. Handout of code for ThreadedRacers
9. UML Activity Diagram for Racer problem

I. Processes and Threads

A. As you know, abstraction is a fundamental design tool in many areas of
computer science. In the realm of operating systems, the fundamental
abstraction is the notion of a PROCESS.

1. A process is a PROGRAM IN EXECUTION.

2. At any given time, the status of a process includes

a) Information about resources that may be allocated to the
process (e.g. open files)

b) One or more threads of execution

c) A region of memory holding its code and data. The memory
belonging to a process is typically divided into four regions

1

(1)Code (called text in the Unix world)

(2)Fixed data (static variables).

(3)Heap: objects created dynamically as the program is running
(e.g. by an operation such as new)

(4)Stack - contains a frame for each routine currently executing
that holds parameters, local variables and return addresses.

PROJECT

2

int i = 3;

a() {
main() {
 int j = 7;
 Foo f = new Foo()
 f.a(3);
}

class Foo
{
 double x;
 void a(int k) {
 int l;
	 ...
 }
}

State of memory when executing the following code at point shown

(main(), a(), and any
other code)

Frame for main()
(exit at end)
j
f

Frame for a()
(return to main)
k
l

object of class Foo
x

(Room for growth)

i

STACK

DATA

HEAP

CODE

(5)The code and data regions are of fixed size, but the heap and
stack can change size as the program runs.

(a) The heap grows whenever an object is created by an
operation such as new. Depending on the programming
language in use, the space allocated for the object can be
freed up for use by another object by explicit deletion or
by garbage collection. But since it is not possible to
predict when this might occur (if it ever does), such
objects are said to have indefinite lifetime.

(b)The stack grows when a routine is called, and shrinks
when the routine returns. Routine call and return obeys a
last-in-first-out order.

(c) To allow the heap and stack to grow and shrink
independently, they are allocated as two separate regions,
growing in opposite directions as shown by the arrows.

3. Frequently, a process has only a single thread of execution

a) Historically, this was always the case.

b) Today, for a variety of reasons, this is not necessarily the case.
Modern operating systems incorporate support for multiple
threads within a single process. For this reason, the book we
are using distinguishes between threads of execution (discussed
in chapter 2) and processes (discussed in chapter 7). We will
largely follow that distinction.

B. More about Threads of Execution (commonly abbreviated to just
Threads)

1. Until now, the programs you have written have typically had a
single thread of execution. We will see shortly how to make use
of a multiple threads within a program; but for now, we’ll focus on
an individual thread.

3

2. A thread is defined by three things:

a) The address in memory of the instruction it is executing -
typically contained in a special register in the CPU called the
program counter (PC).

b) The values that are present in other CPU registers.

c) An execution history, representing the procedure calls that have
brought it to its current point. This history is commonly called
the thread’s stack, and it contains one stack frame for each
procedure that is still active, which holds its parameters, local
variables, and other information:

Example: Suppose we have the following:	
 PROJECT

class SomeClass {
	 void p0() {
	 	 ...
	 }
	 void p1() {
	 	 int v1;
	 	 ...
	 	 p2();
	 	 ...
	 }
	 void p2() {
	 	 int v21, v22;
	 	 ...
	 	 p3();
	 	 ...
	 }
	 void p3() {
	 	 ...
	 	 /* Here */
	 	 ...
	 }

4

	 public static void main(String [] args) {
	 	 p0();
	 	 p1();
}

When execution is at the point marked Here, the stack would
look like this:

PROJECT

Parameter args
(Other information)

Local variable v1
(Other information)

Local variables v21,
v22
(Other information)

(No locals or parameters)
(Other information)

Frame for main()

Frame for p1()

Frame for p2()

Frame for p3()

(Notice there is no frame for p0(), since it completes execution
before p1() is called.)

3. One other important piece of information maintained for a thread is its
state - is it currently able to continue execution, or must further
execution wait until some event occurs (e.g. the completion of an IO
operation it has requested) Over the course of its lifetime, a thread
transitions between various states.

PROJECT

5

a) On a one-CPU system with a single core, there is exactly one
running thread at any given time. On a multi-core system (or
one with multiple CPU’s), there can be as many running threads
as there are cores. (If there are not enough threads eligible to
run, the operating system includes a “do-nothing” null thread
that can be run until some other thread becomes ready.)

b) (Discuss other transitions)

c) The diagram shows that a thread terminates as a result of
executing an exit() operation. Actually, many systems also
allow a thread to be terminated from the other states by some
other thread.

C. To manage the various threads, the operating system maintains a set
of data structures called THREAD CONTROL BLOCKS (TCB's) -
one per process. (On a system that only supports one thread per
process, this may be combined with the information the system
maintains about the process in the process control block, or PCB).

6

RUNNING BLOCKED

dispatch

READY

timer
pre-emption

IO or event wait

IO or event
complete

creation

exit

1. Each TCB contains information about its thread, including:

a) Identification information (what process it is part of, and some
sort of identification within its process)

b) The state of the thread (running, ready, or blocked).

c) The values of the CPU registers if the thread is not currently
running. (When the thread is running, these values are actually
in the hardware registers and change constantly)

2. One major use of the TCB's is in conjunction with a CONTEXT
SWITCH operation.

a) A context switch occurs whenever the a new thread is given use
of the CPU in place of the one that is currently running. This
can happen for one of two reasons:

(1)The running thread has performed some operation - e.g.
issued a request for IO - that requires it to wait until the
operation is completed.

(2)The running thread is pre-empted by some some other
thread, either because of priority or because of timer
preemption.

b) During a context switch, the first thing that must happen is that
the register values associated with the currently running thread
must be stored into its TCB, to be saved until the thread next
gets a chance to run.

c) Then, the stored register values found in the TCB of the thread
about to run are copied into the CPU registers.

7

d) A context switch can be quite computationally expensive -
particularly if the new thread is part of a different process than
the running thread.

3. At any given time, each TCB is typically in one of several
operating system queues.

a) There is a ready queue (ready list) which holds the TCB’s of all
currently ready threads.

b) There is a device queue associated with each shared device
(such as a disk). It is not uncommon for a thread to request an
operation on such a device while it is busy servicing a request
from some other thread. In this case, the PCB for the
requesting thread is placed in a queue, waiting its turn to use
the device.

c) A component of the operating system - called the scheduler - is
responsible for managing these queues in order to make the
most effective possible use of the resources. (We will discuss
CPU scheduling later).

II. Multiple Threads in a Single Process

A. As we noted earlier, historically there was a 1:1 correspondence
between processes (programs in execution) and threads of execution.
Modern operating systems provide support for having multiple
threads in a single process.

1. Some contexts speak of two kinds of processes - traditional, or
“heavy weight” processes, and “light weight” processes - also
known as threads. However, for clarity we will stick with using
“process” for traditional “heavy weight” processes, and will call
“light weight” processes threads.

8

2. If a single process contains several threads, then all the threads
share the same memory allocation.

a) Thus, code, global data, and heap memory is common to all
threads.

b) However, within the stack region each thread has its own stack.

PROJECT Diagram of single-threaded vs multithreaded process

3. The use of multiple threads is driven by considerations of
modularity

a) It is often possible to express the solution to a problem in terms
of a set of fairly simple interacting threads, rather than in terms
of a much more complex single thread. This makes it easier to
produce correct software.

Example: Demo UnthreadedRacers

PROJECT Code

PROJECT Code for ThreadedRacers (program does exactly the
same thing, but is much simpler)

b) In the case of servers serving multiple clients (e.g. a web
server), much simpler software often results from using a
separate thread for each client, rather than having to keep track
of which client is being served in a single thread.

4. Using multiple threads within a single process - as opposed to
using multiple processes with one thread each - has two major
advantages:

9

a) A context switch between threads it the same process tends to
be faster than a context switch between processes, since only
register context needs to be saved and restored - not memory
management context. Thus one can have the modularity
advantages of separate threads with less overhead.

b) Since all the threads share the same global data and heap,
information sharing between the threads is simpler.

B. Multiple threads within a single process can be implemented in two
different ways:

1. By the use of library routines that run in user mode, independent of
the operating system. (I.e. the operating system just manages a
single thread for the process.) Another name for this is the many to
one model - many threads in a single process map to a single
thread as far as the kernel is concerned.

2. By incorporating support for multiple threads within a single
process as part of the operating system. We now have distinct
system services for:

a) Creating a new process (initially consisting of a single thread).

b) Creating a new thread within an existing process.

Another name for this is the one to one threading model - each
thread in the process is know to the OS kernel.

3. The former approach is simpler, and minimizes the overhead
involved in a context switch between threads (since no system call
is involved). The latter, however, allows one thread in a process to
block itself on an IO operation while allowing the other threads to
continue executing.

10

4. Moreover, on a multicore system that supports threads in the
operating system, it is typically possible for two or more threads in
a single process to be running concurrently on separate cores.

III.The Threading Facilities of Java.

A. One important feature of Java is that it incorporates support for
threads as part of the JVM and the standard library.

Other new languages incorporate similar mechanisms, and much the
same effect can be achieved in any language by using a threading
library such as the pthreads facility in Unix-like systems or the
Windows threading facilities. We will discuss the Java approach here,
but the basic concepts are transferable to other models.

B. It is fairly easy to create Java programs that use multiple threads.

1. In fact, you’ve already done so without being aware of it, since
even the simplest Java program uses multiple threads.

a) Every Java program has a main thread that executes the main()
method of an application or the start() method of an applet.

b) Every Java program has one or more implementation-supplied
background threads that handle various “behind the scenes”
tasks - e.g. garbage collection.

c) Java programs that use the awt have one or more
implementation-supplied threads that perform various awt
tasks, as well.

EXAMPLE: AWTThreadDemo.java

(1)Run. Note how clicking buttons changes direction of
counting.

11

(2)Examine code - show count() and actionPerformed()
methods. Note that two methods perform the major tasks:
count() increments/decrements and displays the count
value, and actionPerformed() responds to clicks on up
and down by setting the increment value to +1 or -1 as the
case may be.

(3)How does execution switch from counting to modifying the
increment when a button is clicked? These two methods are
actually executed by two different threads: count() is
executed by the main thread, and actionPerformed() by the
awt event thread. The awt event thread is a part of the Java
implementation that waits for a gesture that would cause an
event to occur, and then calls the handler for that event.

(4)Comment out the time waster loop in the source code,
recompile and run. Note that:

(a) It now counts much faster

(b)Only a small fraction of the values computed are actually
displayed. This is because another thread - the awt
painting thread - is actually responsible for updating the
display. It is triggered each time the label contents is
changed - however, it takes long enough to redraw the
label once that the count is bumped up/down many times
during the same period.

2. Threads in Java are orthogonal to objects: a given thread may
access many objects, and a given object may have its methods
performed by many threads.

12

Objects

Threads

E.g. in the example just given:

a) The main thread accesses the AWTThreadDemo object, the
frame, and the various components that are part of it -
including, in particular, the label that displays the count value.

b) The event thread accesses the AWTThreadDemo object.

c) The painting thread is given a task to do when the event thread
modifies the text of the label that displays the count value, and
then accesses the label to update its visual display on the
screen.

C. While all Java programs make implicit use of threads, it is also
possible to explicitly use threads in a Java program.

Why would one want to do so?

ASK

1. Some applications lend themselves to using multiple threads - the
logic of the application is cleaner this way.

EXAMPLE: The Racer program we looked at earlier

2. A server program may use a separate thread for servicing each
client. This tends to produce cleaner, more modular code.

13

3. A web browser that is downloading a large movie may start
playing it before it is completely downloaded, finishing the
download while earlier portions are playing. This is typically done
by using two separate threads: a “producer” thread that carries out
the download, and a “consumer” thread that plays the file. (Of
course, the speeds must be such that the consumer doesn’t catch up
with the producer or the movie has to stop playing.)

4. In a program that uses the awt (including Swing), any computation
that is performed by an event handler is, in fact, done by the awt
event thread. A consequence of this is that, while one awt event is
being handled, no other awt events can be responded to.

a) For this reason, it is good practice to minimize the amount of
computation done by event handlers or methods they call
directly.

b) If handling an event requires a great deal of processing, or
entails the risk of going into an infinite loop, it is better to
delegate this to a separate thread.

EXAMPLE: AWTBlockDemo.java

(1)DEMO - Note how it is unresponsive to stop button until
count reaches 100

(2)SHOW CODE - Note that the problem is that both count()
and stop() are executed by the awt thread - therefore stop()
cannot be executed while the thread is busy doing count()

14

D. While we have said that Java threads are conceptually orthogonal to
objects, the java.lang package includes a class java.lang.Thread,
and an object of this class is needed for each thread in a given
program. The Thread object serves as a mechanism for creating and
accessing the thread. However, the thread itself is a flow of control,
not an ordinary object - i.e. the thread is conceptually distinct from the
Thread object that provides access to it.

We will illustrate this by walking through the rest of the code from the
threaded version of the Racer example

HANDOUT Code for ThreadedRacer

1. To create a new thread, one must first create an object of class
java.lang.Thread or a subclass.

2. Then, the associated thread must be started. This is accomplished
by activating the start() method of the Thread object.

3. The code that is to be executed by the new thread must be specified
in one of two ways.

a) Create a class that implements the Runnable interface (which
requires a run() method), and pass an instance of this class to
the constructor of class java.lang.Thread. Create and start
the new thread. The code that the new thread executes is the
run() method of this Runnable object.

EXAMPLE: Note in inner class Racer

(1)Each racer object is a GUI component that has an index
from which it can determine its color and it keeps track of a
position (tbat goes from 0 to 100) - see instance variables on
the bottom of page 2.

(2)Each racer object can draw itself as a partially filled in bix
on the screen. (See paint() method on page 2.)

(3)Each racer object is added to the GUI when it is created.

15

(4)The main program also creates four threads (one for each
racer) in the main program immediately following creation
of the racers. Each thread is associated with a racer that is
specified when it is created (parameter to constructor).
Thus, each racer is actually represented by two objects: a
Racer object and a Thread object. (See page 1 again)

(5)Each thread is started by invoking its start() method, just
after the threads are created.

(6)Each thread executes the run() method of the racer object is
is associated with (page 2). This run() method sleeps for a
random amount of time, increments its position, and then
redraws itself. The run() method exits when the position
reaches 100, at which point the corresponding thread
terminates (this happens automatically).

Note how each object need only keep track of the position of
one racer

(7)While the racers are running, there are therefore actually five
threads in operation - the four racer threads, plus the main
thread that created them.

b) Java allows an alternate method for doing the same thing - one
can subclass java.lang.Thread by a subclass that has its own
run() method.. This is somewhat simpler than creating a
Runnable object and then using that to create a thread (half as
many objects involved) - but can’t be used in this case because
Java does not allow multiple inheritance, so creating a subclass
of java.lang.Thread means that the object containing the
run() method cannot subclass any other class. Creating a
separate implementation of the Runnable interface allows the
object containing the run() method to subclass some class as
well (e.g. in this case JPanel) (However, we will use this
simpler approach in the lab you will do on threads.)

16

4. Java also provides an operation known as join() which allows one
thread to wait for another to complete. When this happens, the first
thread continues. (In effect, the two threads are joined into one).

a) This is used in the Racer program. The main thread executes the
join() method of each thread in turn (bottom of page 1).

This method causes the main thread to wait until the racer thread
has completed - at which point the two are joined into one thread.

b) Because the main thread waits, in turn, for each racer, it does not
get out of the loop until all four racers have terminated, at which
point it prints the message "All racers are done".

5. Actually, the Java language recognizes two distinct categories of
threads:

a) User threads execute user code. (E.g. the main program is
executed by a user thread, and threads that it creates are
typically user threads.) The five threads in our racer example
are all user threads.

b) Daemon threads typically execute system code. (E.g. the
garbage collection thread etc. are daemon threads.)

c) The basic distinction is this: when all the user threads for a
given program have terminated, the program itself terminates.
Daemon threads can still be in existence; they are terminated
when the last user thread terminates.

d) Note that the awt threads are actually set up as user threads.
This is because it is quite common for the main program of a
GUI application to simply set up the GUI and then terminate. If
the awt thread(s) were daemon threads, the program would
terminate at that point, before the user could do anything!

17

IV.UML Activity Diagrams

Recall that UML provides a nice mechanism for depicting multithreaded
programs: the Activity Diagram.

A. EXAMPLE: HANDOUT: Activity Diagram for Racer Problem

B. Rounded rectangles represent activities.

C. Arrows represent flow from one activity to the next. Each activity is
assumed to start as soon as its predecessor completes.

D. Where there is concurrency, the diagram shows “forking” of one
thread into two or more, and joining of two or more threads into one.
(Forks and joins should match.)

E. The diagram uses “swim lanes” to show the various parts of the
system that are performing a task concurrently.

18

