
Consider the problem of sorting the following file using two way
external merge sort. Assume it consists of 8 blocks of 4 records
each, and that main memory is only large enough to sort 1 block at a
time. We will regard this as initially consisting of 32 runs of size
1 - ignoring any initial order.

Cat
Unicorn
Dog
Bison
Jackal
Elephant
Vixen
Gopher
Fox
Xerus
Hippo
Cow
Hyena
Giraffe
Iguana
Aardvark
Tiger
Kangaroo
Eel
Buffalo
Zebra
Llama
Mouse
Lion
Newt
Parrot
Snake
Osprey
Yak
Penguin
Raccoon
Turtle

Regard as 32 runs of
length 1

Split into two scratch
files of 4 blocks each,
writing alternate
blocks to each file.

This requires reading
all 8 blocks and
writing all 8 blocks

We call this Pass 0.

Cat
Unicorn
Dog
Bison
Fox
Xerus
Hippo
Cow
Tiger
Kangaroo
Eel
Buffalo
Newt
Parrot
Snake
Osprey

Jackal
Elephant
Vixen
Gopher
Hyena
Giraffe
Iguana
Aardvark
Zebra
Llama
Mouse
Lion
Yak
Penguin
Raccoon
Turtle

Regard each scratch
file as consisting of
16 runs of length 1.

Now merge successive
pairs of runs from each
of the two files,
writing the results to
alternate blocks of two
new scratch files.

This requires reading
all 8 blocks and
writing all 8 blocks.

We call this Pass 1

Cat
Jackal
Elephant
Unicorn
Fox
Hyena
Giraffe
Xerus
Tiger
Zebra
Kangaroo
Llama
Newt
Yak
Parrot
Penguin

Dog
Vixen
Bison
Gopher
Hippo
Iguana
Aardvark
Cow
Eel
Mouse
Buffalo
Lion
Raccoon
Snake
Osprey
Turtle

Regard each scratch
file as consisting of 8
runs of length 2.

Now merge successive
pairs of runs from each
of the two files,
writing the results to
alternate blocks of the
two scratch files that
became empty after Pass
1.

This requires reading
all 8 blocks and
writing all 8 blocks.

We call this Pass 2

Cat
Dog
Jackal
Vixen
Fox
Hippo
Hyena
Iguana
Eel
Mouse
Tiger
Zebra
Newt
Raccoon
Snake
Yak

Bison
Elephant
Gopher
Unicorn
Aardvark
Cow
Giraffe
Xerus
Buffalo
Kangaroo
Lion
Llama
Osprey
Parrot
Penguin
Turtle

Regard each scratch
file as consisting of 4
runs of length 4.

Now merge successive
pairs of runs from each
of the two files,
writing the results to
alternate blocks of the
two scratch files that
became empty after Pass
2.

This requires reading
all 8 blocks and
writing all 8 blocks.

We call this Pass 3

Bison
Cat
Dog
Elephant
Gopher
Jackal
Unicorn
Vixen
Buffalo
Eel
Kangaroo
Lion
Llama
Mouse
Tiger
Zebra

Aardvark
Cow
Fox
Giraffe
Hippo
Hyena
Iguana
Xerus
Newt
Osprey
Parrot
Penguin
Raccoon
Snake
Turtle
Yak

Regard each subfile as
consisting of 2 runs of
length 8.

Now merge successive
pairs of runs from each
of the two files,
writing the results to
alternate blocks of the
two scratch files that
became empty after Pass
3.

This requires reading
all 8 blocks and
writing all 8 blocks.

We call this Pass 4

Aardvark
Bison
Cat
Cow
Dog
Elephant
Fox
Giraffe
Gopher
Hippo
Hyena
Iguana
Jackal
Unicorn
Vixen
Xerus

Buffalo
Eel
Kangaroo
Lion
Llama
Mouse
Newt
Osprey
Parrot
Penguin
Raccoon
Snake
Tiger
Turtle
Yak
Zebra

Regard each subfile as
consisting of 1 run of
length 16.

Merge these to produce
the final sorted file

This requires reading
all 8 blocks and
writing all 8 blocks.

We call this Pass 5

Aardvark
Bison
Buffalo
Cat
Cow
Dog
Eel
Elephant
Fox
Giraffe
Gopher
Hippo
Hyena
Iguana
Jackal
Kangaroo
Lion
Llama
Mouse
Newt
Osprey
Parrot
Penguin
Raccoon
Snake
Tiger
Turtle
Unicorn
Vixen
Xerus
Yak
Zebra

Total effort is one initial
distribution pass plus five
merge passes, or 6 passes in
all. On each pass we read all
8 blocks and wrote all 8
blocks - or 48 reads and 48
writes in all.

In general, if there are n
records grouped b per block
(here n = 32 and b = 4), then
the total number of reads is
(1+log n) passes * (n/b) and
the same number of writes.

Possible improvements:

1) Take advantage of existing natural order in the file to reduce the
initial number of runs, and hence the number of passes needed to
merge down to 1 run. This is called NATURAL MERGE

In a totally random file, the expected average run length is 2 -
which results in reducing the number of merge passes by 1.

2) During the initial distribution pass, use an internal sort to sort
each block. (The additional time cost of this is small when
compared to the time cost for the disk accesses.) [For our
example data, this would result in 8 runs of length 4 initially,
reducing the number of merge passes by 2. Total reads would be
8 * (1+3) = 32 instead of 48.]

In a more typical case, this can result in a much greater reduction
in the number of passes. For example, if we could sort 1024
items internally, we could reduce the number of merge passes
needed by 10, since log2 1024 = 10.

3) Instead of doing a 2-way merge, do a 3 or higher way merge.
The internal code needed to do this is more complex, but this can
significantly reduce the number of passes needed since the
number of passes is logmerge-order n - e.g. a 3-way merge needs
only 63% as many merge passes as a 2-way merge for the same
number of items. [For the example we just did, after one merge
pass we would have 11 runs of length 2-3; after two passes 4
runs of length 5-9 ; after three passes 2 runs; and the fourth pass
would produce the final result.]

(Greater improvements are possible by using even higher merge
orders, though possible improvement achievable this way is
limited by the amount of additional memory needed for buffers
and disk space needed for scratch files.)

1) An even greater improvement is possible by using a technique
known as POLYPHASE merging.

Suppose we used internal sorting to create 8 initial runs of length
4. But instead of dividing these initial runs evenly between the
two scratch files, we put 5 in one scratch file and 3 in the other.

We could then proceed in a series of phases as follows:

Phase	
 Run Distribution	
 Blocks Read

0 - Initial distribution	
 5, 3 blocks of length 1	
 8
1 - Merge 3 runs	
 3 @ 2 blocks 	
 6
	
 2 left over @ 1 block
2 - Merge 2 runs	
 2 @ 3 	
 6
	
 1 left over @ 2
3 - Merge 1 run	
 1 @ 5 	
 5
	
 1 left over @ 3
4 - Final merge	
 1 run of length 8 blocks	
 8

Total	
 	
 33 blocks
	

(This strategy can achieve greater savings when used with higher
merge orders.)	
 	
 	

