
CPS222 - DATA STRUCTURES AND ALGORITHMS

An Example of a Program Using Trees: A Simple Guessing Game

(This handout includes both C++ and Java versions)

/*
 * GuessingGame.cc
 *
 * This program plays a guessing game in which the user is asked a series
 * of yes/no questions about some unknown entity. Eventually, the program
 * makes a guess as to what the entity is. If the program's response is
 * wrong, the user is asked to supply a yes-no question that can distinguish
 * between the program's guess and the correct answer, and this information
 * is added to the program's knowledge base.
 *
 * The program's internal knowledge base is represented as a binary decision
 * tree, in which internal nodes represent questions and external nodes
 * represent guesses. When the program guesses wrong, the external node
 * containing the guess is replaced by a new subtree containing the
 * user-supplied distinguishing question, the original guess, and the new
 * entity.
 *
 * At program startup, the user is asked for the name of a data file that
 * contains the program's "knowledge", and at termination the user is given
 * the opportunity to save the updated knowledge base to a file. The first
 * line in the file describes the program's subject matter, and each subsequent
 * line in the file represents a single node in the tree. The first word on
 * the line is an integer indicating whether the node is an internal (question)
 * node (1) or an external (guess) node (0); this is followed by a single space;
 * then the remainder of the line is the question or guess, as the case may be.
 * The tree is stored in the file in preorder.
 *
 * Before playing the game, an initial knowledge base file must be created
 * consisting of at least a subject on line 1 and one possible guess on
 * line 2.
 *
 * Copyright (c) 2001, 2003 - Russell C. BJork
 */

#include <string>
#include <iostream>
#include <fstream>
using namespace std;

C++ version - page 1

class GuessingGame
{
 public:

 	 // Construct a guessing game instance by reading data from the
 	 // specified file
 	 GuessingGame(istream & file);
 	
 	 // Save a guessing game instance to a file

 	 void saveTree(ostream & file) const;
 	
 	 // Play a round of the game - updating tree if final guess is wrong
 	 void playGame();
 	
	 // Destructor - delete all nodes in tree

 	 ~GuessingGame();

 private:

	 string _subject;	 // Subject the game is about

	 // The game tree is composed of two kinds of nodes - question
	 // (internal) nodes and guess (leaf) nodes. The content of
	 // a question node is the question to ask; of a guess node,
	 // the answer to propose. A guess node can be turned into a
	 // auestion node when a guess fails
	 class Node;
	
	 Node * _root;	 // Root of the tree representing the game
	
	 // Recursive auxiliary for constructor	

	 static Node * readTree(istream & file);
	
	 // Recursive auxiliary for saveTree	
	 static void writeTree(ostream & file, Node * root);

	 // There is no good reason for copying or assigning an
	 // object of this class, so by making these private we
	 // prevent their inadvertent use and avoid needing to
	 // actually implement them

 	 GuessingGame(const GuessingGame & rhs);
 	 const GuessingGame & operator = (const GuessingGame & rhs);
};

C++ version - page 2

class GuessingGame::Node
{
 public:

	 // Constructor for a question node - needs question and
	 // subtrees to go into if answer is no or yes	
	 Node(string question, Node * ifNo, Node * ifYes)	 	
	 : _isQuestion(true), _contents(question), _lchild(ifNo), _rchild(ifYes)
	 { }
	 // Constructor for a guess node - needs guess	

	 Node(string guess)
	 : _isQuestion(false), _contents(guess), _lchild(NULL), _rchild(NULL)
	 { }
	 // Accessors for information stored in a node	
	 bool isQuestion() const
	 { return _isQuestion; }
	 string getQuestion() const
	 { return _contents; }
	 Node * getNoBranch() const
	 { return _lchild; }
	 Node * getYesBranch() const
	 { return _rchild; }
	 string getGuess() const
	 { return _contents; }
	 // Convert a guess node to a question node - needs question
	 // and subtrees to go into if answer is no or yes

	 void convertToQuestion(string question,
	 	 	 Node * ifNo, Node * ifYes)
	 {
 	 _isQuestion = true;
	 _contents = question;
	 _lchild = ifNo;
	 _rchild = ifYes;
	 }
	 // The destructor recursively deletes any nodes pointed to
	 // by this node	 	
	 ~Node()
	 {
	 if (_isQuestion)
	 {
	 	 delete _lchild;
	 	 delete _rchild;
	 }
	 }
 private:
 	 bool _isQuestion;
 	 string _contents;
 	 Node * _lchild, * _rchild;
 };

C++ version - page 3

GuessingGame::GuessingGame(istream & file)
{
 getline(file, _subject);
 _root = readTree(file);
}
GuessingGame::Node * GuessingGame::readTree(istream & file)
{
 // Read the information for this node
 bool isQuestion;
 file >> isQuestion;
 file.get();	 	 // Skip over single blank space
 string contents;
 getline(file, contents);

 // Construct the node, reading subtrees recursively if needed

 if (isQuestion)
 {
 Node * ifNo = readTree(file);
 Node * ifYes = readTree(file);
 return new Node(contents, ifNo, ifYes);
 }
 else
 	 return new Node(contents);
}

void GuessingGame::saveTree(ostream & file) const
{
 file << _subject << endl;
 writeTree(file, _root);
}
void GuessingGame::writeTree(ostream & file, Node * root)
{
 file << root -> isQuestion() << " ";
 if (root -> isQuestion())
 {
	 file << root -> getQuestion() << endl;
 writeTree(file, root -> getNoBranch());
 writeTree(file, root -> getYesBranch());
 }
 else
 	 file << root -> getGuess() << endl;
}
// Ask the user a yes-no question; return true if user answers yes, false if
// no; reprompt the user if the answer is not recognizable.
bool askYesNo(string question)
{
 string answer;
 do
 {
	 // Ask the user the question, read answer, convert to all caps
	 cout << question << "? ";
	 getline(cin, answer);
	 for (int i = 0; i < answer.length(); i ++)
	 if (islower(answer[i]))
	 	 answer[i] = toupper(answer[i]);

C++ version - page 4

	
	 const string YES = "YES";
	 const string NO = "NO";
	 // Check to see if answer was yes or no. If so, return appropriate
	 // value - else ask again.
	 if (answer == YES.substr(0, answer.length()))
	 return true;
	 else if (answer == NO.substr(0, answer.length()))
	 return false;
	 else
	 cout << "Please answer yes or no" << endl;
 }
 while (true);
}
void GuessingGame::playGame()
{
 Node * current = _root;
 cout << "Please think of a(n) " << _subject << endl;
 if (! askYesNo("Are you thinking of a(n) " + _subject))
 	 return;
 while (current -> isQuestion())
 {
 if (askYesNo(current -> getQuestion()))
 current = current -> getYesBranch();
 else
 current = current -> getNoBranch();
 }
 if (! askYesNo("Is he/she/it " + current -> getGuess()))
 {
 	 // Guessed wrong - find out what user was thinking of
 	 // and get a new question for future use.

	 string userAnswer, userQuestion;
	
	 cout << "Who/what were you thinking of? ";
	 getline(cin, userAnswer);
	 cout << "Please enter a yes/no question that would distinguish "
	 << userAnswer << " from " << current -> getGuess() << endl;
	 getline(cin, userQuestion);
	
	 // Extend the tree appropriately
	
	 if (askYesNo("For " + userAnswer + " the answer would be"))
	 current -> convertToQuestion(userQuestion,
	 	 new Node(current -> getGuess()), new Node(userAnswer));
	 else
	 current -> convertToQuestion(userQuestion,
	 	 new Node(userAnswer), new Node(current -> getGuess()));
 }
}
GuessingGame::~GuessingGame()
{
 delete _root;
}

C++ version - page 5

// Main program
int main(int argc, char * argv [])
{
 // Access file containing initial knowledge base

 cout << "File to read the knowledge base from? ";
 string filename;
 getline(cin, filename);
 ifstream knowledgeIn(filename.c_str());
 if (! knowledgeIn)
 {
 cerr << "Unable to open file" << endl;
 return 0;
 }

 // Create the game

 GuessingGame theGame(knowledgeIn);
 knowledgeIn.close();

 // Play the game as often as the user wants

 do
 {
 theGame.playGame();
 }
 while (askYesNo("Would you like to play again"));

 // Offer opportunity to save the knowledge base to a file

 cout << "File to write the knowledge base to - blank for none? ";
 getline(cin, filename);

 if (filename.length() > 0)
 {
 ofstream knowledgeOut(filename.c_str());
 if (! knowledgeOut)
 {
 cerr << "Unable to open file" << endl;
 return 0;
 }
 theGame.saveTree(knowledgeOut);
 knowledgeOut.close();
 }
}

C++ version - page 6

The same program, but in Java.
(For ease of comparison, this version is directly translated from the C++ version. If written from scratch in
Java, it might well use a GUI rather than a console interface, and might also use a slightly different
knowledge file format. This version works with the same knowledge files as the C++ version, too.)

/*
 * GuessingGame.java
 *
 ... REMAINDER OF PROLOGUE COMMENT SAME AS C++ - OMITTED TO CONSERVE PAPER

 */

import java.io.*;

/** An object of this class represents a guessing game. */

public class GuessingGame
{
 /** Constructor
 *
 * @param file the file to read the game tree from
 */
 public GuessingGame(BufferedReader file) throws IOException
 {
 subject = file.readLine();
 root = readTree(file);
 }

 /** Save the (possibly modified) game tree to a file
 *
 * @param file the file to save the game tree to
 */
 public void saveTree(PrintWriter file) throws IOException
 {
 file.println(subject);
 writeTree(file, root);
 }

 /** Play an instance of the game, updating the tree if needed
 */
 public void playGame() throws IOException
 {
 Node current = root;

 System.out.println("Please think of a(n) " + subject);
 if (! askYesNo("Are you thinking of a(n) " + subject))
 return;

 while (current.isQuestion())
 {
 if (askYesNo(current.getQuestion()))
 current = current.getYesBranch();
 else
 current = current.getNoBranch();
 }

Java version - page 7

 if (! askYesNo("Is he/she/it " + current.getGuess()))
 {
 // Guessed wrong - find out what user was thinking of
 // and get a new question for future use.
 String userAnswer, userQuestion;
 System.out.print("Who/what were you thinking of? ");
 userAnswer = consoleIn.readLine();
 System.out.println(
	 	 "Please enter a yes/no question that would distinguish "
 + userAnswer + " from " + current.getGuess());
 userQuestion = consoleIn.readLine();
 // Extend the tree appropriately

 if (askYesNo("For " + userAnswer + " the answer would be"))
 current.convertToQuestion(userQuestion,
 new Node(current.getGuess()), new Node(userAnswer));
 else
 current.convertToQuestion(userQuestion,
 new Node(userAnswer), new Node(current.getGuess()));
 }
 }

 /** Main program */
 public static void main(String[] args) throws IOException
 {
 // Access file containing initial knowledge base
 System.out.print("File to read the knowledge base from? ");
 String filename;
 filename = consoleIn.readLine();
 BufferedReader knowledgeIn =
 new BufferedReader(new FileReader(filename));
 // Create the game

 GuessingGame theGame = new GuessingGame(knowledgeIn);
 knowledgeIn.close();
 // Play the game as often as the user wants
 do
 {
 theGame.playGame();
 }
 while (askYesNo("Would you like to play again"));
 // Offer opportunity to save the knowledge base to a file

 System.out.print("File to write the knowledge base to - blank for none? ");
 filename = consoleIn.readLine();
 if (filename.length() > 0)
 {
 PrintWriter knowledgeOut = new PrintWriter(new FileWriter(filename));
 theGame.saveTree(knowledgeOut);
 knowledgeOut.close();
 }

 System.exit(0);
 }

Java version - page 8

 /* Instance variables */

 private String subject; // Subject the game is about

 private Node root; // Root of internal knowledge tree

 /* Private methods - auxiliary to public methods above */

 /** Read a tree stored in preorder in a file
 *
 * @param file the file to read from
 * @return root of resultant tree
 */

 private static Node readTree(BufferedReader file) throws IOException
 {
 // Read the information for this node

 boolean isQuestion = ((char) file.read() == '1');
 file.skip(1); // Skip over single blank space
 String contents = file.readLine();

 // Construct the node, reading subtrees recursively if needed

 if (isQuestion)
 {
 Node ifNo = readTree(file);
 Node ifYes = readTree(file);
 return new Node(contents, ifNo, ifYes);
 }
 else
 return new Node(contents);
 }

 /** Write a tree to a file in preorder
 *
 * @param file the file to write to
 * @param root the root of the tree
 */

 private static void writeTree(PrintWriter file, Node root) throws IOException
 {
 file.print(root.isQuestion() ? 1 : 0);
 file.print(" ");
 if (root.isQuestion())
 {
 file.println(root.getQuestion());
 writeTree(file, root.getNoBranch());
 writeTree(file, root.getYesBranch());
 }
 else
 file.println(root.getGuess());
 }

Java version - page 9

 /** Ask the user a yes-no question
 *
 * @param question the question to ask
 * @returntrue if user answers yes, false if no
 *
 * (reprompt the user if the answer is not recognizable.)
 */

 private static boolean askYesNo(String question) throws IOException
 {
 String answer;
 do
 {
 // Ask the user the question, read answer, convert to all caps

 System.out.print(question + "? ");
 answer = consoleIn.readLine();

 // Check to see if answer was yes or no. If so, return appropriate
 // value - else ask again.

 if (answer.equalsIgnoreCase("YES".substring(0, answer.length())))
 return true;
 else if (answer.equalsIgnoreCase("NO".substring(0, answer.length())))
 return false;
 else
 System.out.println("Please answer yes or no");
 }
 while (true);
 }

 /* Wrap System.in in a BufferedReader object so we can use readLine(),
 * etc. on it.
 */

 private static BufferedReader consoleIn =
 new BufferedReader(new InputStreamReader(System.in));

Java version - page 10

 /** The game tree is composed of two kinds of nodes - question
 * (internal) nodes and guess (leaf) nodes. The content of
 * a question node is the question to ask; of a guess node,
 * the answer to propose. A guess node can be turned into a
 * question node when a guess fails
 */

 private static class Node
 {
 /** Constructor for a question node
 *
 * @param question the question to ask
 * @param ifNo the subtree to go into if user answers no
 * @param ifYes the subtree to go into if user answers yes
 */

 Node(String question, Node ifNo, Node ifYes)
 {
 isQuestion = true;
 contents = question;
 this.lchild = ifNo;
 this.rchild = ifYes;
 }

 /** Constructor for a guess node
 *
 * @param guess the guess to try
 */

 Node(String guess)
 {
 isQuestion = false;
 contents = guess;
 lchild = null;
 rchild = null;
 }

 /** Accessor for whether a node represents a question or a guess
 *
 * @return true if a question, false if a guess
 */

 boolean isQuestion()
 {
 return isQuestion;
 }

 /** Accessor for question stored in a node.
 * Precondition: the node represents a question
 *
 * @return the question stored
 */

 String getQuestion()
 {
 return contents;
 }

Java version - page 11

 /** Accessor for "no" branch from a question node.
 * Precondition: the node represents a question
 *
 * @return root of the "no" branch
 */

 Node getNoBranch()
 {
 return lchild;
 }

 /** Accessor for "yes" branch from a question node.
 * Precondition: the node represents a question
 *
 * @return root of the "yes" branch
 */

 Node getYesBranch()
 {
 return rchild;
 }

 /** Accessor for guess stored in a node.
 * Precondition: the node represents a guess
 *
 * @return the guess stored
 */

 String getGuess()
 {
 return contents;
 }

 /** Convert a guess node to a question node
 * Precondition: the node currently represents a guess
 *
 * @param question the question to ask
 * @param ifNo the subtree to go into if user answers no
 * @param ifYes the subtree to go into if user answers yes
 */

 void convertToQuestion(String question, Node ifNo, Node ifYes)
 {
 isQuestion = true;
 contents = question;
 lchild = ifNo;
 rchild = ifYes;
 }

 /* Instance variables of a Node */

 private boolean isQuestion; // True for question, false for guess
 private String contents; // Question or quess as the case may be
 private Node lchild, rchild;// "No" and "Yes" branches for a question
 }
}

Java version - page 12

