CPS311 Lecture: Error Detecting and Correcting Codes Revised August 4, 2015
Materials: Hamming Code Projectable, Handout

I. Introduction

A. With any technology, there is a danger that information will be corrupted
due to physical imperfections in storage media or electronic "noise".
Since an undetected error of even 1 bit can be catastrophic, we wish to
take measures to detect such errors as might occur. As a minimum, we
seek error detection; but error correction is even better.

B. The same principles are often used when transmitting data from one place to
another over a network - the other place where data is especially vulnerable to
corruption (even more so.)

II. Simple Error detecting/correcting codes
A. ALl error detection/correction schemes depending on using more bits to

store information than what one actually needs.

Of course, the simplest such scheme is parity. With each data item, we
store an extra bit called the parity bit.

1. One convention, called odd parity, specifies that the parity bit be set
so that the total number of 1 bits (including the parity bit) is odd

Examples:

Data item 01010101
Item + parity 101010101
Data item 10000011

Item + parity 010000011

2. An dalternate convention, called even parity, sets the parity bit so
that the total number of 1 bits (including the parity bit) is even.
The choice of which convention to use depends on what sort of
catastrophic error is judged most likely to occur. For example, if
a complete system failure would normally result in all data being
converted to @'s, then odd parity would report something wrong but
even would not. On the other hand, if system failure would turn all
data to 1's (and the total length of data plus parity is odd) then
even parity would be preferred,

3. To check the correctness of an item, the receiver simply counts the
number of 1 bits and ensures that they are odd or even, as the case
may be. (Of course, both the originator and the receiver of the item
must use the same convention as to odd/even parity.)

4. Parity is what we call a 1-bit error detecting code

a. It can tell us that some bit is corrupt - but not which one is



corrupt. When a parity error occurs, any data bit might be in error,
or the data might itself be fine and the parity bit corrupt!

b. It can be fooled by a multiple error. If 2 bits are corrupted,
a parity test will tell us everything is ok.

B. More sophisticated schemes provide for not only detecting but also
correcting errors, and may be able to detect multi-bit errors. One
rather simple example is a scheme once used on magnetic tape.

1. Data on tape is written in blocks, composed of frames. Each frame
typically has 8 data bits plus a frame parity bit. Each block has a
an extra frame called the block checksum, each of whose bits is a
parity check on one row position throughout the length of the block -

e.g.
dddddddddd1l <- this bit checks all the d's to its left
dddddddddd1l
dddddddddd1l
dddddddddd1l
dddddddddd1l d=data
dddddddddd1l f = frame parity
dddddddddd1l 1 = longitudinal parity
dddddddddd1l
ffffffffffl<- this bit checks both all the 1's above
A it and all the d's to its left
I
This bit checks all d's above it

2. Consider what would happen if there were a single bit in error in
the block. When the user reconstructs the f's and 1's, he would
find that one f and one 1 are incorrect. Together, these two would
isolate the one bit in error, which could be corrected by inverting it.
Thus, we have 1 bit error correction.

3. Now suppose two bits were corrupted.
a. If they were in the same frame, we would have 2 1's in error.
b. If they were in the same row, we would have 2 f's in error.

c. If they were in different frames and different rows, we would
have two errors each in f's and 1's.

d. In any case, would be able to detect a 2 bit error (though we
could not correct it.)

4. Finally, consider the effect of a 3 bit error. In most cases, we
would get multiple error indications in both f's and 1's - letting
us know that the data is corrupt. However, there is one pathological
case to be aware of. Let e be the bits in error:

e e <- 1 ok here



e <- 1 signals error here

A A

I I
f ok here f signals error here

Unfortunately, this would look like a (correctable) 1 bit error.
But we would correct the wrong bit, thus ending up with a 4 bit error!

5. For this reason, this encoding scheme is called a one-bit error
correcting, two-bit error detecting scheme. Its usefulness is
based on the assumption that errors involving three or more bits are
so improbable as to be allow us to assume such errors won't occur.

a. Suppose that the probability of a bit being corrupted 1is
1079. (One per billion).

i. Such an error can be corrected and processing can proceed. If
we process a billion bits per second, such a situation will
arise, on the average, once per second.

ii. The probability of a two bit error is 10718. Such an error
can be detected - and some alternate path can be pursued to
get the correct value. (E.g. recomputing it from an old value
and a log of transactions, or retransmitting if we are dealing
with a message over a network.) If we process a billion bits per
second, this will occur, on the average, once every 317 years.

iii. The probability of a three bit error is 10727, Such an error
might be detected (many would be), but could escape detection.
If we process a billion bits/second, this amounts to no more
than one undetected error in 317 billion years - probably
fairly safe!

b. Note that neither this scheme, nor any other, can GUARANTEE that
an undetected error won't occur - it can only make such an error
improbable enough to make us willing to trust the system.

c. The fact that error-correcting and detecting schemes are only
probably correct means that, in some sense, computer-processed
data is never ABSOLUTELY GUARANTEED to be accurate.

ITTI. Hamming Codes

A. Now we consider a scheme that can be used for error detection/correction
in a single word of data. The scheme is called a Hamming code. The
example we will develop is for a word length of 11 bits - but the idea
could be extended to any word size.

DISTRIBUTE HANDOUT; SHOW PROJECTABLE PAGE 1

1. Let there be n data bits (numbered dg .. dn-1)



2. We will add m correcting bits, where m is the smallest integer
such that 2™ >= (n + m + 1). (Example: 11 data bits - let m = 4 -
24 - 16 = (11 + 4 + 1). We number these bits cpg .. Cp-q

3. We will logically, though not necessarily physically, intersperse
the correcting bits so that their positions in the overall word
are powers of 2. (We number bits in the overall word 1 .. m + n).

Ex: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
dig dg dg d7 dg ds dg c3 d3 dz di cz dg c1 Cp

4. Let each c;i be a parity check on the remaining bits in logical

positions which contain 21 in their binary representation - e.g.

cg checks all bits in odd numbered positions

c1 checks bits in positions 3, 6, 7, 10, 11, 14, 15
¢y checks bits in positions 5, 6, 7, 12, 13, 14, 15
c3 checks bits in positions 9 .. 15

(Observe: no c checks any other ¢ - only d's. Thus, the c's can
be computed knowing only the d's.)

5. To store a word, add in the necessary correcting bits and store
the combination. To check a word retrieved from storage:

a. Extract the d bits.
b. Compute what the c bits should be.
c. XOR the computed c bits with the actual c bits.
i. If the result is all @'s, the stored word is ok.

ii. If the result is non-@, treat the XOR result as the binary
representation of an integer. This is the number of the bit
position where the error occurred (assuming a 1 bit error),
where bit positions must be numbered starting at 1, not 0.

Example (using odd parity): data originally:

10101010101 => 1010101_010_1__ w/slots for c's PROJECTABLE 2

Correcting bits: cp = 0
¢ =1
=0
c3 =1
Stored word is 101010110100110 PROJECTABLE 3,4



Assume data bit @ (slot 3 if bit slots are numbered starting at 1)
is corrupted in storage, so that word as read is 101010110100010

The receiver would extract the data bits 10101010100, and would
compute the c bits on this basis to be

o PROJECTABLE 5,6
€1
2

3

]
P & o B

XORing with the c bits extracted from the stored data yields 0011 -
indicating that the error is in slot 3 of the stored data, as desired.

PROJECTABLE 7

. The code we have presented gives 1 bit error correction, but could be
fooled by a 2 bit error. (We would, in fact, create a 3-bit error
by "correcting" the wrong bit!)

. To add 2-bit error detection, we simply add a conventional parity bit.

1. In the dabsence of error, the parity bit will indicate no error,
and the correcting bits will show no error (exact match between
computed and stored values.)

2. A 1-bit error can always be corrected.

a. If it is in the data or correcting bits, it will cause both the
parity bit and the correcting bits to report an error, and the
correcting bits can be used to correct it.

b. If it is in the parity bit, it will cause the parity bit to report
an error, but the correcting bits will report no error. 1In this
case, we know that the parity bit is wrong.

3. A 2-bit error will always be detected but cannot be corrected.

a. If two data and/or correcting bits are wrong, this will cause the
parity bit to NOT report an error, but the correcting bits WILL
report an error - this is taken as an indication of a double error
that we can detect but not fix.

(There is no way to corrupt exactly two bits in such a way as to
cause the correcting bits to report no error, because each data
bit affects at least two correcting bits, and no two data bits
affect the same set of correcting bits.)



b. If one data or correcting bit plus the parity bit are corrupted,
once again the parity bit will NOT report an error, but the
correcting bits WILL report an error (in fact, the right one).
However, since we can’t distinguish this case from the previous
one, we will simply have to recognize a double error and let it
go at that.

IV. More Sophisticated Schemes

A. There are, of course, other error detecting and correcting schemes.
The most widely used scheme is based on cylic-redundancy polynomials,
which we can't go into here. Such schemes can be made to not only yield
1-bit error correction, 2-bit error detection, but also can detect
longer error bursts (successive corrupted bits).

B. A finadl general observation on the cost of error detection/correction
in terms of added bits. Some terminology:

1. Any error detection/correction scheme operates by creating an
extended encoding for the data in such a way that certain bit patterns
are legal and others are not. (For example, odd parity creates an
encoding in which words having an odd number of 1's are legal and
those having an even number are not.)

2. For any such encoding, we can define the distance between two legal
words as the number of bits that would need to change to go from one
to the other. For example, the distance from 101010 to 101100 is 2.

3. For any encoding scheme, we can define the minimum distance to be
the smallest distance between any two legal words. For example,
for simple parity the minimum distance is two.

4. Now observe:

a. For a 1-bit error detecting code, a minimum distance of 2 1is
necessary.

b. For a 1-bit error correcting code, a minimum distance of 3 is
necessary. This guarantees that for any erroneous word
there will be at most 1 word that has a distance of 1 from it.
We take that correct word to be the original data that was
corrupted.

c. For 1-bit error correction plus 2 bit error detection, we
need a minimum distance of 4.

d. In general, for n-bit error correction we need a minimum distance
of 1 + 2*n, and for m-bit error detection (m >= n) we need to
increase the distance by m-n.

5. We can reduce the sheer number of added bits by generating the
detecting/correcting bits for longer blocks of data.



Example: assume we want 1-bit error correction 2-bit error detection.
we need a minimum distance of 4.

If we have a 128 byte message, we could achieve this by adding
5 error-detecting/correcting bits to each byte, for a total of

128 * (8 + 5) = 1664 bits. (2% >= 8+4+1; add 1 for parity)

Or, we could treat the message as 32 "words" of 4 bytes each,
appending 7 error-detecting/correcting bits to each word, for a

total of 32 * (32 + 7) = 1248 bits. (26 >= 32+6+1; add 1 for parity)

Or, we could treat the message as 16 "words" of 8 bytes each,
appending 8 error-detecting/correcting bits to each word, for a

total of 16 * (64 + 8) = 1152 bits. (27 >= 64+7+1; add 1 for parity)

Or, we could treat the entire message a single long "word",
appending 12 error-detecting/correcting bits to it, for a total

of 1036 bits! (211 >= 1024+11+1; add 1 for parity)



