
CPS311 Lecture: Exceptions

Last revised September 16, 2019
Objectives:

1. To introduce the concept of interrupts and exception
2. To introduce signal handling in Unix
3. To introduce the use of break/syscall operations

Materials:

1. Ability to demo original version of quadratic equation solver (in Procedures
demos) plus revised version with signal handler (in Exceptions demos),

2. Projectable of setjmp/longjmp operation
3. Handout showing code added to use a MIPS/Unix signal catcher

I. Introduction

A. In our discussion thus far, we have assumed that the flow of control
within a program proceeds from instruction to successive instruction,
except when explicitly altered by a branch or procedure call instruction.

B. There are, however, two kinds of events that can cause the flow of
execution to be altered apart from an explicit instruction in the currently
running program.

1. INTERRUPTS can be generated by external devices to indicate that
they need service by the CPU. Examples:

a) When a disk controller has been asked to transfer a block of data
between memory and the disk, it will issue an interrupt request
when the transfer is complete.

b) The controller for a keyboard may issue an interrupt request every
time a key is struck.

c) A network interface may issue an interrupt when a packet arrives.

1

d) The system clock issues an interrupt request at regular intervals so
that software can keep track of the time of day and can manage
sharing of the CPU resources among different users (time-slicing.)

2. EXCEPTIONS arise from the operation of the currently running
program. They are usually (but not always) the result of some flaw in
the program.

Examples:

a) Memory access violations - attempting to access a region of
memory the program is not allowed to access (usually resulting
from an error in address computation or an infinite loop.)

b) Illegal instructions - usually the result of bad code or attempting to
execute data.

c) Invalid arithmetic results - e.g. overflow

3. Interrupts and exceptions differ in that the former are
ASYNCHRONOUS while the latter are SYNCHRONOUS.

a) Interrupts arise from conditions outside the currently running
program. Thus, if the same program is run again, it is very
unlikely that the same interrupt will occur at the same point in the
program.

b) Exceptions arise from the behavior of the currently running
program. Ordinarily, if a given program gives rise to an exception,
then it will generate that same exception at the same point in its
execution every time it is run on the same input data.

4. It is often - but not always - the case that exceptions arise from some
sort of error in the running program.

2

C. On most computers, dealing with interrupts and exceptions involves
features of both the hardware and the operating system.

1. In response to an interrupt or exception, the hardware typically does a
forced jump to an operating system routine that is designed to handle
the specific condition detected. In so doing, it saves enough
information about the context in which the interrupt/exception
exception has been dealt with.

2. The operating system routine that is invoked must analyze the specific
event and decide on an appropriate action, which may or may not alter
the execution of the program that was running at the time the
interrupt/exception occurred.

3. In the remainder of this lecture, we will look at how a specific CPU/
operating system combinations deal with interrupts/exceptions: Unix
on MIPS. The hardware part of the process is MIPS specific, while
the operating system part is similar on all Unix-like systems
(including Linux).

II. MIPS/Unix Interrupt/Exception Handling

A. On most systems, including MIPS, interrupts and exceptions are handled
the same way by the hardware.

1. On MIPS, two special CPU registers are loaded when an interrupt or
exception occurs:

EPC = PC value at time interrupt/exception occurred
Cause = code indicating what happened

2. Control goes to a fixed address in memory, which must contain a
routine that deciphers the Cause and takes the appropriate action (The
routine located at this point is part of the operating system.)

3

3. In this regard, the MIPS hardware is simpler than many other
machines. It is common to find that the hardware branches to a
different location in memory, depending on WHICH interrupt or
exception occurred.

Most CPU architectures define a TABLE of addresses (commonly
called the interrupt vectors) which specify which routine is invoked
for which condition. On MIPS, all interrupts and exceptions go to the
same routine, which must in turn determine what happened (from the
Cause register) and then initiate appropriate action. (We will discuss
the notion of interrupt vectors later in the course.)

B. In the case of an interrupt, the operating system code transfers control to
an interrupt handler that is part of the device driver for the specific device
that interrupted, which takes it from there.

C. In the case of an exception, Unix converts the exception to a signal
which is delivered to the process through the Unix signal mechanism
(discussed in the Unix manual pages under the heading signal.)

1. In Unix, signals can be sent from a variety of sources.

a) An exception within the current program, as discussed here.

b) User action at the keyboard - e.g. typing ^C to terminate the
program, or ^Z to suspend execution.

c) Another program using the kill system service to send a signal.

2. Each signal has a signal number - a small integer. (On the version of
Unix on our mips system, it's in the range 1..64; on Linux

3. The default action for a signal is one of the following - depending on
the specific signal:

a) Terminate the program.

4

b) Terminate the program with a core dump (a copy of the current
state of the memory and registers contained in a file called core,
which can then be analyzed by a debugger to determine the cause
of the error.)

c) Stop the program - with the possibility of resumption later.

d) Ignore the signal.

4. Demo: original quadratic equation solver - with overflow: (Use B =
65536)

D. The default handling of a signal can be overridden by using the signal
system service. This system service takes two parameters - an integer
that identifies the signal, and the address of a function that is to be called
when that signal occurs. Thereafter, any occurrence of that particular
signal will be "caught" by the handler.

 HANDOUT - Quadratic equation solver extended to handle overflow
(setup code that calls signal).

E. Since once a procedure establishes a handler it becomes possible for that
handler to be invoked by an exception in any procedure that it calls
(directly or indirectly), there is sometimes a need to unwind the stack of
pending procedure calls to get back to the procedure that actually
established the handler. On Unix, this is handled by setjmp and
longjmp.

1. HANDOUT - setjmp in entry protocol and longjmp in handler

2. DEMO: program with overflow handling - same data

3. The operation of setjmp and longjmp

PROJECT

5

6

Stack in Memory

Content of stack
at time setmp is
called

Program in Memory

setjmp instruction
(next instruction)
...
...

Registers

 pc
 $sp

Situation when setjmp is called

Result of setjmp:

• Stack, registers and program are unchanged
• A copy of the content of the registers is saved
in the environment passed as a parameter to
setjmp  
• setjmp returns 0 to the caller

Stack in Memory

Content aadded
since setmp was
called

Content of stack
at time setmp is
called

Program in Memory

setjmp instruction
(next instruction)
...
longjmp instruction
(next instruction)

Registers

 pc
 $sp

Situation when longjmp is called

III.Deliberately Caused Exceptions

A. Though exceptions normally arise due to program errors detected by the
hardware, there are some times when it is useful for the software to be
able to create an exception

B. There are three reasons why this is necessary.

1. A program may make use of a deliberately-thrown exceptiojn to
handle problems occurring in the program (e.g. exceptions used in the
Library project in CPS122.)

2. Debuggers make use of a special instruction that causes a
signal(caught by the debugger) in order to allow breakpoints to be set
in a progam.

7

Stack in Memory

Content aadded
since setmp was
called

Content of stack
at time setmp is
called

Program in Memory

setjmp instruction
(next instruction)
...
longjmp instruction
(next instruction)

Registers

 pc
 $sp

Result of longjmp

• Registers are restored to the values saved in
the environment passed as a parameter to
setjmp  
• setjmp returns 1 to the called

e.g. the "stop in main" command you used in an earlier lab caused dbx
to replace the first instruction in main with a break instruction (after
saving a copy of the real instruction that was there.) A signal handler
established by the debugger, in turn, allows dbx to regain control
when execution reaches this point.

On MIPS, this instruction is called break.

3. Calling operating system services.

a) In order to protect system integrity against erroneous (or malicious)
user programs, as you recall from CPS221 most CPU's can run in
one of two modes, often called kernel mode and user mode.

(1)The operating system runs with the CPU in kernel mode.

(2)All other programs run with the CPU in user mode.

(3)Certain operations are only permitted when the CPU is in
kernel mode - e.g

- Halting the CPU
- IO operations
- Access to certain regions of memory (e.g. that which
contains the operating system and other users' programs on a
multi-user system.

Thus, only operating system code can perform these
operations.

b) When an interrupt or exception occurs, the CPU is switched into
kernel mode by the hardware. This doesn't result in any danger to
system integrity, because the hardware also transfers control to
code at a known address, which is part of the operating system
(and resides in a region of memory that cannot be altered while the
CPU is in user mode.)

8

c) When a user program needs an operating system service (e.g. an
IO operation), it executes a special instruction that causes n
exception. The operating system interprets execution of this
instruction as a request for a system service, and takes ppropriate
action (assuming the program is requesting a service legally.)\

d) Various ISA's call this instruction "syscall" or "trap" or
"change mode to kernle". (On MIPS it is called syscall).

9

