
CPS311 Lecture: Introduction to the MIPS Architecture and Assembly
Language

Last revised June 21, 2021

Objectives:

1. To introduce the MIPS architecture
2. To introduce MIPS R-Type, immediate, and load-store instructions

 Materials:

1. Levels of Structure Diagram with Highlighted Levels
2. IPS ISA Handout (will have been distributed before class)
3. Projectables of diagrams in handout
4. Connection to MIPS to demo gcc

I. Introduction

A. At the start of the course, we introduced the notion of levels of
computer structure.

PROJECT Levels diagram with highlighted layers

1. We first looked at the digital Components level

2. Then we moved up the the Building Blocks level

3. We now move all the way up to the Architecture level - then we
will go back down to the microarchitecture level, since in order to
study implementation we need to understand both the things we are
building with and what it is we need to build

B. For the next few weeks, then we will be studying the Machine Language
level of system description. At this level, a computer system can be viewed
as a memory, a set of registers, and a set of instructions for manipulating
the information in the memory and registers.

1

1. Programs written at a higher level of system description (e.g. in a
language such as C) are translated into primitive operations at this level.

2. This level is, in turn, implemented directly by hardware - i.e. the registers
are arrays of flip-flops, addition is performed by full adders, etc.

3. The architectural description of a machine at this level is often
referred to an Instruction Set Architecture (ISA).

C. For this portion of the course, we will be focussing on a particular
instruction set architecture (ISA) known as MIPS.

1. It is not the goal of these lectures that you should become proficient
MIPS assembly or machine language programmers.

2. Rather, we want to use MIPS as an example of a typical instruction
set architecture.

a) The MIPS architecture belongs to the general category of
Reduced Instruction Set Computer (RISC) architectures.

(1)As such, it is easier to learn than a Complex Instruction Set
Computer (CISC) architecture such as the x86 architecture
used by most laptops and PCs.

(2)Although the x86 architecture (and its 64-bit extension) is
not a RISC architecture, the current practice is to implement
this architecture on top of a RISC core (there is a RISC
inside the CISC).

b) When we get to the actual details of implementing a CPU (computer
organization), the implementation of a RISC architecture like MIPS
is more comprehensible - and, indeed, we will discuss the
implementation of the MIPS architecture in later lectures.

2

3. It is also the case that once you have become familiar with one
instruction set architecture, it is much easier to learn another.
(Once you learn to drive a Ford, driving a Chevy is easy.)

D. A bit of history

1. The MIPS architecture grows out of an early 1980's research
project at Stanford University.

2. In 1984, MIPS computer corporation was founded to commercialize
this research. However, CPU chips based on the MIPS architecture
have been produced by a number of different companies, including
LSI Logic, Toshiba, Philips, NEC, IDT, and NKK.

3. The MIPS architecture has passed through a series of evolutions,
known as MIPS I, MIPS II, MIPS III, and MIPS IV.

a) Each successive ISA is a superset of the preceding one - so

anything found in MIPS I is also found in MIPS II, III, and IV, etc.

b) The MIPS I and II ISA's were 32 bit architectures. MIPS III
added 64 bit capabilities - but with the core 32 bit architecture
as a subset.

c) We will confine our coverage to the core MIPS I architecture.

4. Note that the MIPS architecture itself is older than you are!

a) That may seem surprising, given the rapid progress in the field
of CPU performance. However, the changes have mostly come
at the implementation level, not the architectural level.

(Compare: Today's cars are much safer, longer lasting, and
environmentally friendly than those of decades ago - however,

3

the basic architecture of engine, four wheels, a steering wheel,
accelerator, brake and (optionally) clutch pedals has remained
unchanged for decades.)

b) Though mips chips are not currently used in laptops or
workstations, they are still widely used in embedded systems
including many driver assistance systems in cars.

c) For pedagogical reasons, mips is still widely used in computer
architecture courses like this one because the simplicity and
regularity of its design makes in more easily understood both in
terms of an ISA and in terms of implementation,

E. Note that, at this point, we are going to study the MIPS
ARCHITECTURE. As is true of most successful architectures, There
have been many implementations of this architecture, but all have the
same basic architecture and support the basic instruction set that was
present in the original R2000 implementation, and this is what we will
study.

II. Basic MIPS-I Architecture

A. Go over diagram in handout. (Note: IO Devices will be discussed later
in the course and vary widely from installation to installation.)

PROJECT Diagram

B. Discuss handout material on CPU registers

1. The CPU has 35 user-visible REGISTERS (plus several typically
used only by the operating system). Each register holds one word
(32 bits).

2. Registers can be thought of as a very special kind of memory cell.

4

a) Registers are part of the CPU, not the memory system.

b) A register is referred to by name (e.g. $31, pc) instead of by
address.

(1)The general registers have generic names ($0, $1 ...)

(2)But some also have special names as noted in the handout.
Note that these are aliases - either the general name or the
special name refers to the same register.

(3)The other registers (pc, hi, lo) only have special names.

c) Information in a register can be accessed in much less than one
clock cycle (e.g. much less than a nanoseconds on a 1GHz +
machines). In contrast, information in memory requires 10's of
ns to access.

3. Discuss

a) 32 general registers. Two have special uses

(1) $0 is always zero (hardwired to this value - cannot be
changed) Special name: zero

(2) $31 is used for the return address when a procedure call
instruction is executed. It can be used for other things, but
by convention it is not. Special name: ra

b) pc - always contains address of next instruction

c) hi and lo

d) Note that - in contrast to the VonNeumann machine, there is no
IR. That's because MIPS uses a pipelined implementation in

5

which several instructions are at different stages of processing
at any one time. There are several "IR's" that are part of the
pipeline registers, as we shall see later.

C. Discuss Handout material on Memory

1. The amount of physical memory installed will vary from system to
system Special hardware and software gives the user the appearance
of a much larger VIRTUAL MEMORY by using disk as an
extension of main memory to hold regions not currently being used.

2. Addresses whose leftmost bit is 1 (0x80000000 to 0xffffffff) are
handled in special ways by the memory management hardware, and
so are not used by ordinary user programs (though they are used by
the operating system).

3. Individual regions of memory may be PROTECTED, so that a user
program may be prohibited from writing it or reading or writing it. (This
allows the system to protect multiple users of the same system from one
another, and to protect itself from them.)

 (Memory management and protection are topics we will consider toward
the end of the course. They are only an issue when writing user programs
if one accidentally or intentionally uses an invalid address. The familiar
"segmentation fault - core dumped" that you may have gotten due to
pointer error in a C++ program is the operating system's typical response
to attempted access to illegal memory addresses.)

4. Thus, regardless of the mount of physical memory actually
installed, the application program view of memory is 2 Gigabytes,
with addresses ranging from 00000000 to 0x7fffffff (on a 32-bit
version of MIPS).

6

III.Basic MIPS Instructions

A. The Basic Execution Cycle

1. The CPU fetches and executes instructions from memory.

a) Each instruction is one word (32 bits) long.

PROJECT Basic instruction format

b) The leftmost six bits of each instruction are the OPCODE which
specifies what operation is to be performed. (Some instructions
use additional bits elsewhere in the instruction to further specify
the operation.)

c) The remainder of the instruction specifies the OPERANDS -
what values the operation is to be performed upon.

d) The precise format of the rest of the instruction (what bits have
what meaning) follows one of three patterns, depending on the
opcode. (We will briefly introduce two today.)

2. Like all Von Neumann machines, the CPU repeatedly executes the
following "fetch - execute" cycle:

while not halted
{

fetch a word from the memory location specified by pc
update pc (pc <- pc + 4 since instructions are one word long)
decode instruction
execute instruction

}

PROJECT

7

3. MIPS instructions have one of three formats:

a) R-Format

b) I-Format

c) J-Format

B. The add instruction as a typical R-Format instruction

PROJECT R-Format

1. The MIPS add instruction can be used to add the contents of two
SOURCE registers, placing the result in some DESTINATION
register (which can be the same as one of the source registers, or
different.)

2. It looks like this (all values given in decimal)

of bits 6 5 5 5 5 6

 field op rs rt rd shamt funct

 contents op = 0 1st 2nd dest (not arith/logical

for source source reg used - function =
most R reg reg 0) 32 for add
type
instructions

This general format of instruction is called R format (where R stands for
"register", because all operands are in registers)

8

3. Thus, the instruction to add the contents of register 8 and register 9.
placing the results in register 10, would look like this:

bits 31..26 25..21 20..16 15..11 10..6 5..0  
(6) (5) (5) (5) (5) (6)  

 
field op rs rt rd shamt func  
values  
(decimal) 0 8 9 10 0 32  
(binary) 000000 01000 01001 01010 00000 100000  
 
= 0000 0001 0000 1001 0101 0000 0010 0000  
hexadecimal = 0x01095020  

PROJECT Machine language format for example add

4. Clearly, writing instructions in machine language is an error-prone and
tedious process. For this reason, we normally use assembly language
as a symbolic representation, relying on a program (the assembler) to
translate into machine language for us.

Ex: The above instruction in assembly language

add $10, $8, $9 - corresponds to HLL $10 = $8 + $9  

PROJECT

Three things to note:

a) The symbolic op code (add) represents values both in the op and
the function fields

b) Order of specifying registers

(1)Machine language: source1, source2, destination

9

(2)Assembly language: destination, source1, source2

(corresponds to the way we would write a HLL assignment
statement: destination = source1 + source2. The order of
writing is not an issue, since we use a program to translate the
symbolic form to machine language.)

(3)The shamt field that is not used by add (and many other
instructions) is not specified at all in the assembly language
form.

C. Other R-Format instructions

1. Go over list in handout.

PROJECT

a) Discuss distinction between add/sub and addu/subu

b) Note two kinds of shift instructions (fixed amount and variable
amount)

c) Note two kinds of right shift instruction (arithmetic, logical)

d) We will see uses for jr, jalr, slt, sltu later, so we won't discuss now.

2. You might think that MIPS would have multiply and divide instructions
that look similar to add and subtract - but this is not the case.

a) Multiply and divide are much more complex operations. An add or
subtract can be done in one machine cycle, but a multiply or divide
will take many cycles.

10

b) For this reason, early RISC architectures did not include multiply
and divide instructions - they had to be synthesized by a software
subroutine when needed.

c) MIPS does have hardware multiply and divide instructions, but
they differ from most other R-type instructions in two ways

(1)They do not specify a destination register - the result of
multiplication is placed as a double-length value in hi and lo; and
division produces two results - quotient in lo, remainder in hi.

(2)These instructions START the execution of the operation,
which is performed by the multiply divide unit in parallel with
further ordinary computation.

The result is fetched from hi and lo by mfhi, mflo - which are
interlocked - i.e. further execution of instructions by the CPU is
suspended until the needed value is available.

IV.Working with Constants

A. The add immediate instruction.

1. Many times, it is necessary to work with integer constants in a
program - e.g. C/C++/Java i ++ translates into "add 1 to i"

2. One way to handle this would be to store the value 1 in a known
location in memory, and then treat it like a memory variable when its
value is needed.

3. However, because constants are needed so often, MIPS provides a
special form of the add and several other instructions for dealing with
them, called add immediate. These instructions are called I-Format
instructions, because the instruction contains an IMMEDIATE VALUE
as part of the instruction.

11

PROJECT

of bits 6 5 5 16
field op rs rt immediate value
contents op = source destination value to add

8 for addi reg reg (two's
complement
signed number)

4. Example: to add 1 to register 8, and put the result in register 9, we
could use the following instruction

bits 31..26 25..21 20..16 15..0
(6) (5) (5) (16)

field
values
(decimal) 8 8 9 1
(binary) 001000 01000 01001 0000000000000001

= 0010 0001 0000 1001 0000 0000 0000 0001
 hexadecimal = 0x21090001

PROJECT

5. The assembly-language way of writing the above would be

addi $9, $8, 1

PROJECT

(By now you're used to the fact that the MIPS machine language has
the order source then destination, while the assembly language puts the
destination first!)

31 26 25 21 20 16 15 0

opcode rs rt 16 bit value
 or rd

12

6. Actually, the addi instruction can be used for much more than just
adding a value to a register.

a) Suppose we wanted to SUBTRACT 1 - e.g. to do something like

i --

We can do this with addi, using a negative value. (Assume i is in
register 8):

addi $8, $8, -1

b) Suppose we wanted to LOAD 1 into a register - e.g. to do
something like:

i = 1;

We can do this with addi, taking advantage of the fact that register
0 always contains 0. (Assume i is in register 8)

addi $8, $0, 1

c) Other architectures might include several different instructions -
e.g. add immediate, subtract immediate, and load immediate. In
keeping with the RISC philosophy, MIPS has just one that can be
used to perform multiple jobs.

B. Other Immediate instructions - Handout. Note that some treat the 16 bit
constant as a signed number (and therefore sign extend to 32 bits) while
others treat it as unsigned (and therefore append 16 leading 0's)

PROJECT

C. The load upper immediate Instruction

1. The I-Format instructions allocate 16 bits in the instruction to hold the
immediate value to be used. For those instructions which sign extend

13

the immediate value, we can represent any value between -32768 and
+ 32767; for those which don't sign extend, any value between 0 and +
65535.

2. What do we do if we need a value outside this range? The MIPS
architecture includes a "load upper immediate" instruction (lui), that
can be used to place a 16 bit value into the UPPER half of a 32 bit
register. When followed by an ordinary immediate instruction
(typically ori to avoid sign extension), this can be used to put any 32
bit value in a register.

of bits 6 5 5 16
field op 0 rt immediate value
contents op = (not destination value to load

15 for lui used) reg into upper 16
bits

3. Example:

C: x = 0x12345678  

MIPS: lui $2,0x1234  
ori $2,$2,0x5678  
sw $2,x

V. MIPS Load and Store Instructions

A. An important architectural characteristic of RISCs is that all
computational instructions operate on values contained in registers, and
put their result in a register.

1. If we want to do computation on variables contained in memory, we need
to first load them into registers, do the computation there, and then (if
necessary) store the result back into memory. (NOTE: in many ISA's, the
term LOAD is used to mean "copy a value from a location in memory
into a register", and STORE is used to mean "copy a value from a
register into a location in memory" - but these terms are not used with
100% consistency! We will always use them in this way, though.

14

Ex: Assume that the variables x, y, and z are stored in memory, and we
want to compute

x = y + z

a) Would be translated by four MIPS instructions

Load y into some register (say $8)
Load z into some other register (say $9)
Add the registers, putting the result into some register (say re-use
$8)
Store the result register into x

b) In assembly language

lw $8, --- address of y
lw $9, --- address of z
add $8, $8, $9
sw $8, --- address of x

2. There are major two reasons why RISCs use this approach (known as
load store architecture).

a) It facilitates using a speed-improving technique known as
PIPELINING (to be discussed in detail later.)

b) It allows an arithmetic instruction to be represented in a single
word - note that it takes only 5 bits to specify a register, but could
take as many as 32 to specify a memory address (so if we could do
x = y + z in one instruction, the instruction could need 96 bits just
to specify the addresses of the three operands, plus more for the
opcode! - which would amount to the same total length as four one-
word instructions)

3. Obviously, when a value is stored in a register it is much easier to
manipulate than when it is stored in memory. For this reason, good
compilers (and smart human programmers) try to take advantage of

15

the large number of available registers to store frequently-used
variables in registers, rather than memory.

a) For example, if a function contains a few local variables, these will
most likely be kept in registers, and will never exist in memory -
since they come into existence when the function is entered, and
cease to exist when it terminates.

b) The C language includes a register directive which can be used, when
declaring a variable, to tell the compiler that the variable should "live"
in a register if at all possible.

Example:

register int i;

The compiler will try to set aside a register to hold the value of i, and
will not put it in memory (unless it is unable to reserve a register.)

c) However, good compilers incorporate register allocation algorithms
that accomplish the same result - but often more efficiently than
humans can do with register "hints" - so most programmers leave it
to the compiler to handle this issue.

d) Nonetheless, in any program having more than a very small number of
variables, there will be a need to keep many variables in memory.

B. This leads us to a consideration of the basic load and store instructions.

1. As indicated in the example above, each load or store must specify the
operation to be performed, a register to be loaded or stored, and a
memory address.

2. An astute observer will note that this appears to need more than the 32
bits available in an instruction word: some number of bits to specify the

16

operation, 5 to specify the register, and 32 to specify the memory
address!

3. To avoid this problem, MIPS uses a format for these instructions that
specifies the address in terms of a BASE REGISTER and a 16 bit
OFFSET. The address is computed by adding the base register and the
offset together. The instruction format used is I-Format, similar to that
of the immediate instructions we looked at earlier.

of bits 6 5 5 16
field op rs rt immediate value
contents op = source transfer offset

35 for lw (base) (to load) (16 bit two's
43 for sw reg reg complement

signed number)

4. Example: to load the contents of memory location 100 (decimal) into
register 8, we could use the following instruction - taking advantage of
the fact that $0 always contains zero:

PROJECT

bits 31..26 25..21 20..16 15..0
(6) (5) (5) (16)

field
values
(decimal) 35 0 8 100
(binary) 100011 00000 01000 0000000001100100

 = 1000 1100 0000 1000 0000 0000 0110 0100
hexadecimal = 0x8c080064

5. The assembly-language way of writing the above would be

lw $8, 100($0)

17

(Note, once again, that the order of the two register operands is the
opposite of the machine-language order. The load and store instructions
always specify the transfer register first, then the offset and base register.
As usual, the assembler takes care of the order issue for us.)

6. It might seem that the limitation to using a 16 bit offset would "cramp
our style" in terms of accessing memory - i.e. a 16 bit offset can
assume values in the range -32768 .. + 32767 if we regard the offset as
a signed number.

a) If the address we wish to access is in low memory (up to 32767),
we can specify it directly, using $0 as the base register.

b) It is common for programs to group variables into regions of
memory, and to use a register to point to the beginning o that region.

(1)The fields of an object are allocated storage in successive
locations of memory, and the "this" pointer of methods is set to
point to the first such location.

Example: Suppose we have a declared as follows:

class SomeClass
{

int x, y, z;

void foo()
{
 x = y + z;
}
...

When foo() is executing, the following situation might exist in
memory:

18

| x | <--- this is address of start of
--------- this area
y
z

PROJECT

Assuming that the value of this is placed in register 2, the code
for the assignment statement in foo might translate as follows
(actual code generated by g++ on our MIPS machine)

lw $3, 4($2)  
lw $4, 8($2)  
add $3, $3, $4  
sw $3, 0($2)  

(Since ints are stored as words (4 bytes long), y is at an offset of
4 relative to this, and z is at an offset of 8.)

PROJECT

(2)Wherever possible, local variables of a function are kept in
registers, rather than memory. However, if variables need to be
in memory, most compilers put the local variables of a function
into a single region of memory called the "stack frame" of the
function, and set register 29 (known by the special name $fp) to
point to it.

Example: a function might declare local variables as follows:

int a, b;

Assume, for the sake of discussion, that these need to be kept in
memory. Then the compiler might generate code that would
create the following environment when the function is called:

19

| a | <--- $fp holds address of beginning of
--------- this area
b

Then we might load b into register 8 by the following code:

lw $8, 4($fp)

(Since ints are one word (4 bytes) long, b is at an offset of 4
from the beginning of the frame area.) (Note: actual compilers
store additional information in the frame, so if you looked at
actual compiled code the offset would be more than 4,
reflecting this.

(3)Many compilers put global variables into a single region of
memory, and set register 28 (known by the special name $gp) to
refer to point to it. This allows global variables to be referenced
by loads of the form:

lw register, some-offset($gp)

Note: The gnu compilers we have on our mips machine doesn't
actually do this.

c) If all else fails, it is always possible to access a variable in memory
by putting its address into a register, and then using an address of
the form

 0(the register)

The assembler is capable of generating code to accomplish this,
and uses a specific register that is set aside by software convention
for this: register 1 - known by the special name at (assembler
temporary.)

20

7. Go over list of load-store instructions

PROJECT

C. In addition to accessing scalar variables, it is also possible to use load/
store to access elements of an array. In this case, two approaches are
possible:

1. If the element number is a constant, we can put the address of the array in
a register and encode the element number in the offset.

Example: Given an array of integers x, load x[4] into register 9, assuming
that register 8 holds the address of the array (the address of x[0])

ASK

 lw $9, 16($8) # 16 because each element is 4 bytes long

2. If the element number is a variable, we can compute the address of the
desired element in a register and then use it with offset 0.

Example: Given an array of integers x, load x[i] into register 9,
assuming that register 8 holds the address of the array, and register 10
holds the value of i. Use register 2 as a temporary.

ASK

add $2, $10, $10 # $2 = 2 * i  
add $2, $2, $2 # $2 = 4 * i  
add $2, $2, $9 # $2 = address of x[i]  
lw $9, 0($2)  

 

PROJECT

3. Note that in C/C++ and Java it is possible to use very similar statements
to allocate storage for an array:

 C/C++ int * x = new int [10];
Java int [] x = new int [10];

21

In both languages, x now is a variable that holds the ADDRESS of the
first element of the array (x[0]), and access to an array element x[i] is
obtained by adding the value of x and the value of i (times the size of an
element). This is the way that the underlying hardware accesses arrays.

VI.MIPS Conditional Branch Instructions

A. The original version of the MIPS ISA defined two conditional branch
instructions, which change the value in the program counter (and thus
alter the flow of the program) if some condition is true. (Later versions of
the ISA defined additional such instructions, but we will limit ourselves
to these two now).

1. beq - branch if the two registers are equal

2. bne - branch if the two registers are not equal

3. Both can be used for comparison to zero if $0 is used as one of the
registers

B. Both conditional branches are I format instructions, and look like this

of bits 6 5 5 16
field name op rs rt immediate value
contents op = first second offset

4 for beq reg to reg to (two's complement
5 for bne compare compare signed number)

(where rs and rt specify the registers to compare)

PROJECT

C. Both conditional branches specify the destination of the branch as an
offset relative to the value currently in the PC.

22

1. The offset is sign-extended to yield a signed number, and then is
multiplied by 4 (because all instruction addresses are a multiple of 4)
and then added to the value currently in he pc, which is by this time
the address of the NEXT instruction to be executed. (So the offset if
effect specifies the distance in instructions - not bytes.)

2. The offset can range from -32678 to +32767. After multiplication by 4,
and adding to the address of the next instruction, this means that
conditional branches can "reach" to an instruction in the range

addr of branch instruction - 131068 .. addr of branch instruction + 131072

D. An important quirk: RISC computers (including MIPS) achieve
impressive performance in part by overlapping the execution of several
instructions.

1. We will see, when we get to the implementation of MIPS, that the ISA
was designed to allow the CPU to actually be working on different
parts of up to 4 successive instructions at the same time.

2. This poses an interesting problem in the case of conditional branches:
by the time that a decision has been made about whether or not to
branch, the next instruction has already been fetched from memory.

a) This doesn't pose a problem if the branch is not taken (the condition
is false). But what if the condition is true? In this case, we have
fetched an instruction from memory that we don't want to execute.

b) We could just nullify the instruction - causing a "bubble" in the
pipeline. However, what many RISCs - including MIPS - do is to
execute the instruction anyway. Often, it is possible to fill this "branch
slot" with a useful instruction that needs to be done regardless of
whether or not we branched; but - absent this - it is standard practice to
fill this slot with a "nop" (no-operation) instruction.

23

E. We will discuss how comparisons other than for equality (e.g. <, <=, >, >=)
are handled later.

VII.J-Format Instructions

A. The last MIPS instruction format we need to discuss is the J-Format -
which is only used for two instructions.

PROJECT

1. The J instruction is used for unconditional branches in a program. It
places the address specified into the pc, which causes the instruction at
that address to be the next one executed.

2. The JAL instruction is used for calling a function/procedure. It does
the same thing as J, except that it also places the value in the pc at the
time it is executed (which is the address of the next instruction after
the JAL) into $31 - so that when the function or procedure completes
it can return to the instruction just after the one that called it.

B. The target address field in the instruction is only 26 bits long, which isn't
long enough to specify an address anywhere in memory (for which a 32
bit address would required). Two measures are used to deal with this.

1. The target address specified in the instruction is multiplied by 4.
Multiplication by 4 is done because instructions are words, and
therefore must have addresses that are a multiple of 4. Doing this
allows a 26 bit address to encode information that corresponds to the
lower 28 bits of the pc.

24

31 26 25 0

opcode target address

2. The target address is loaded into the lower 28 bits of the pc, nd the
upper 4 bits are left alone. This means that the jump must always be
to an address in the same 256 MB chunk of memory as the instruction
is in. Since most programs are much smaller than 256 MB, this hasn't
proved to be a serious problem.

C. It a longer "reach" is needed, the R-Format jr and jalr instructions
introduced earlier can be used. They use the 32-bit (or 64-bit) address in
the rs register as the target address. (rt and rd are ignored in this case.)

VIII.The Assembler

A. From the examples above, it should be clear that writing MIPS programs
in machine language would be tedious and error prone, and that such
programs could be very hard to modify. This is true of any machine
language. Thus, from the earliest days of computing (the 1950's), when it
is necessary to program at this level it has been common to write
programs in a symbolic ASSEMBLY LANGUAGE and then use a special
program called an ASSEMBLER to translate the symbolic program into
actual binary machine code.

B. Today, of course, it is relatively uncommon to write programs in assembly
language - though assembly language must still be used for writing some
low-level components of system software such as operating systems.
Today, most assembly language is actually written by compilers - many
compilers translate a HLL into assembly language, which then translates
it into machine language - though some compilers compile directly to
machine language.

1. Example: The C and C++ compilers on most Unix systems work this
way.

E.g. if we compile a C++ program called foo.cc into an object program
foo.o using the command|

g++ -c foo.cc

25

We actually get an intermediate file called foo.s which is then
translated to get foo.o

2. Normally, the assembly code is deleted after it is assembled. However,
you can use the -S command line switch to stop the process after the
assembly code is produced.

DEMO:

Create the following simple program demo.cc:

int x, y, z;

void foo()
{
 x = y + z;
}

Compile using gcc -S demo.cc

Show demo.s.

Note that there is a _lot_ of overhead code associated with entering
and exiting a function.

Note several lines that are immediately recognizable:

lw $2,y  
lw $3,z  
addu $2,$2,$3  
sw  

(Note: the addu instruction is very similar to the add instruction we
have considered, except that it does not do any checking for overflow.
We will consider how MIPS add handles overflow later; note that C
programs simply ignore overflow!)

26

C. Historically, there has been a one-to-one correspondence between lines of
assembly language code and machine instructions - e.g. the symbolic
operation code corresponds directly to a machine language op code, and
each line of assembly language produces exactly one machine
instruction.

1. However, on RISCs this is not necessarily true - many RISC
assemblers will accept some constructs that assemble into more than
one machine instruction, and will synthesize certain RISC instructions
from assembly language instructions that do not correspond directly to
a machine instruction.

2. Example: in the above - the various load and store instructions may
require more than one machine instruction.

Ex: lw $2,y

If y's address is <= 32767, this can be encoded in a single I ormat lw
instruction. However, if y's address is >= 32768, it may be necessary
to synthesize a sequence of instructions that put the address of y into
some temporary register (at), and then the instruction lw $2, 0(at).
Thus, this one line could translate into as many as three machine
language instructions.

3. Example: The MIPS assemblers recognize certain pseudo-instructions
that can be synthesized from other actual machine instructions.

a) Example: Suppose we want to copy the value in $2 into $3. How
can we do this using MIPS instructions we already know?

ASK

add $3, $2, $0

The MIPS assembler will accept the pseudo instruction:

27

move $3, $2

which does not directly correspond to any MIPS machine
instruction, and will synthesize an instruction like the above when
it occurs.

b) Example: Suppose we want to load a constant (say 42 = 2a hex) into
register 2. How can we do this using instructions we know?

ASK

ori $2, $0, 42

The MIPS assembler will accept the pseudo instruction:

li $2, 42

which does not directly correspond to any MIPS machine instruction,
and will synthesize an instruction like the above when it occurs.

4. The pipelined implementation of MIPS requires that we cannot use a
value loaded from memory on the very next instruction. (This has to
do with the fact that execution of successive instructions is overlapped
in time.) Sometimes the assembler needs to insert a "do nothing"
instruction to ensure that values are valid. (We will discuss this later
in the course, and will ignore it for now.)

D. You will get some experience working with the MIPS assembler in lab.

IX.An Example

A. To put everything together, consider the compilation of the following C/
C++ assignment:

int answer;
int x, y;
int a[10];
int i;

answer = (x + a[i]) - (y + 1);

28

B. MIPS assembly language (ignoring load delays). Assume, for simplicity,
that all variables are in a low address region of memory, so they can be
accessed by a 16-bit address. (A more realistic situation would involve 32-
bit addresses, but that's not the point here.)

lw $8, i # $8 = value of i  
sll $8, $8, 2 # $8 = 4*i  
lw $8, a($8) # $8 = word at address of a + 4 * i = a[i]  
lw $9, x # $9 = x  
add $8, $9, $8 # $8 = x + a[i]  
lw $9, y # $9 = value of y  
addi $9, $9, 1 # $9 = y + 1  
sub $8, $8, $9 # $8 = (x + a[i]) - (y + 1)  
sw $8, answer

C. MIPS machine language. Assume, for simplicity, that answer is at 100, x at
104, y at 108, a at 112, and i at 152 - all decimal.

ASK class to develop

lw $8, i # $8 = value of i

35 0 8 152 (values in decimal)
100011 00000 01000 0000000010011000 (values in binary)
1000 1100 0000 1000 0000 0000 1001 1000 = 0x8c080098

sll $8, $8, 2 # $8 = 4*i

0 0 8 8 2 0
000000 00000 01000 01000 00010 000000
0000 0000 0000 1000 0100 0000 1000 0000 = 0x00084080

lw $8, a($8) # $8 = word at address of a + 4 * i = a[i]

35 8 8 112
100011 01000 01000 0000000001110000
1000 1101 0000 1000 0000 0000 0111 0000 = 0x8d080070

29

lw $9, x # $9 = x

35 0 9 104
100011 00000 01001 0000000001101000
1000 1100 0000 1001 0000 0000 0110 1000 = 0x8c090068

add $8, $9, $8 # $8 = x + a[i]

0 8 9 8 0 32
000000 01000 01001 01000 00000 100000
0000 0001 0000 1001 0100 0000 0010 0000 = 0x01094020

lw $9, y # $9 = value of y

35 0 9 108
100011 00000 01001 0000000001101100
1000 1100 0000 1001 0000 0000 0110 1100 = 0x8c09006c

addi $9, $9, 1 # $9 = y + 1

8 9 9 1
001000 01001 01001 0000000000000001
0010 0001 0010 1001 0000 0000 0000 0001 = 0x21290001

sub $8, $8, $9 # $8 = (x + a[i]) - (y + 1)

0 8 9 8 0 34
000000 01000 01001 01000 00000 100010
0000 0001 0000 1001 0100 0000 0010 0010 = 0x01094022

sw $8, answer

43 0 8 100
101011 00000 01000 0000000001100100
1010 1100 0000 1000 0000 0000 0110 0100 = 0xac080064

30

