
CPS352 Lecture - Indexing

Last revised 3/18/2021
Objectives:

1. To explain motivations and conflicting goals for indexing
2. To explain different types of indexes (ordered versus hashed; clustering 

versus non-clustering; dense versus sparse; multilevel indexes)
3. To show how a B-Tree can be used for an index or whole file
4. To show how hashing can be used for an index or whole file
5. To introduce SQL create index 

Materials:

1. Projectables of example of sparse index.
2. Projectable of summary of index types
3. Projectables of example B+ Tree;  search example; insertion example that 

splits a leaf (2); B+ Tree with links to support sequential traversal added; 
4. Projectable of Figure 14.9 from book
5. Projectable of calculation of minimum nodes in a B+ Tree with m = 200 and 

room for 50 rows in leaf nodes and 3 levels of index
6. Projectable of example of a Hashtable
7. Projectable of syntax for create index in db2, mysql

I. Introduction

A. Database systems are often used to manage very large databases, with a 
high volume of transactions.  In such cases, system performance (as 
measured by the average time it takes to complete a transaction) can be 
crucial not only to the success of the system, but also to the success of the 
organization using it.

B. One of the most common operations a DBMS has to perform is searching for the 
row(s) of some table containing some specified value(s) in some column(s).

1



1. The select operation in relational algebra entails just such a search. 
 
Example: suppose the IRS had a taxpayer table with the SSN as the primary 
key, and also holding the taxpayer's name, and suppose it contained 
information on 100 million tax returns, kept in order of primary key.  To find 
the row corresponding to a given name might entail scanning all 100 million 
records.  If the 100 records fit in a disk block, that could mean as as 1 million 
disk accesses, which could take as much as 10,000 seconds or over 2 hours!

2. In relational systems, the natural join operation is very common.  This 
may entail scanning through one of the two relations row by row, 
searching the second relation for a match on the join field(s) for the 
current row in the first relation.

3. Because searches are so common, major improvements in system 
performance can be realized by storing special index structures with  the 
database to facilitate searching.  The purpose of an index is to enable us to 
find the row(s) we are interested in without having to look through the entire 
table -  c.f. the relative ease of finding a topic in a book by using the index, 
rather than by reading through the book from start to finish!

4. Two important considerations in the design of indexing systems are:

a) The tradeoff between the computational gain from using the index 
and the computational cost of maintaining it when the table is 
altered by an operation such as insert, update, or delete.

b) The extra disk space that the index structure requires, together with 
extra time needed to maintain the index when modifying the data.

C. A key term used in discussing indexes is the term search key.

1. This is a separate and distinct concept from the concept of superkey, 
candidate key, primary key, etc.  Search keys can by superkeys, but 
need not be.  [ One of those unfortunate cases where the same word is 
used in two ways. ].

2



2. A search key is the attribute (or sometimes set of attributes) on which 
an index is based.  For example, if a book contains an index by topic, 
then topic is the search key.  If it contains an index by author cited, 
then author is the search key, etc.

3. It is possible, of course, for one table to have multiple indexes - each 
based on a different search key.   
 

Example: a student registration system will have a Student table, for 
which it is likely that there will be at least two indexes: one based on 
the student-id, and another based on the last-name.  
 

Because each index needs to be maintained when the table is modified 
by an insert, delete, or update - and because index structures consume 
additional disk space - an index is created only when there is reason to 
believe that the performance gain from having it outweighs the cost of 
storing/maintaining it.

4. In general, indexes are much smaller than the table they index - so 
where possible they can be stored in a faster kind of storage to 
expedite processing of queries.

a. If the system has both SSD and disk secondary storage, the indexes 
for a database may be kept in SSD storage while the data resides on 
disk.

b. It may be expedient for the DBMS to copy all or the top level of an 
index into primary storage when a connection is established to a 
database - to be discarded when the connection is terminated.

D. In considering index structures, one has to consider issues like:

1. The purpose for which the index will be used.  

3



a) All index structures support finding the row(s) in which some 
specific value of the search key occurs (e.g. SQL  
where searchkey = somevalue).  

b) Some index structures also facilitate range queries (e.g. SQL where 
searchkey between somevalue and someothervalue).

c) Some index structures also facilitate accessing all the rows in the 
table in order of the search key (e.g SQL order by searchkey )

2. How frequently the data in the table in question is updated.  If the 
table is modified frequently, the index structure needs to be one that 
facilitates fast modification.  If the table is read-mostly (or read-only), 
the index structure might be one that makes modification more 
expensive but provides easier access to data.

3. Whether the search key is, in fact, a superkey.  In this case, an exact value 
search will find at most one row of the table.  If it is not a superkey, an exact 
value search might find multiple rows.  (Contrast searching a student 
database using student-id as a search key versus using last-name)

a) If the search key is a superkey, then each entry in the index will 
refert to exactly one row in the table.

b) But if the search key is not a superkey,  the index structure must allow 
each entry to refer to multiple rows - calling for a more complex 
structure. 

E. Recall from our discussion of physical file systems that the time needed 
to access information on disk is orders of magnitude greater than the time 
needed to access information in main memory.   Hence, the goal of an 
index structure is to facilitate finding the disk block containing the 
desired table row with minimal disk accesses.   We are willing to do a fair 
amount of searching (even a sequential search) in the block once it has 
been read from disk to actually locate the desired data, as long as we can 
find the block quickly.

4



F. Index structures are part of the physical level of database design, and so 
are usually created and maintained by the DBA.

1. One of the benefits of physical data independence as an attribute of a 
DBMS is that it allows the DBA to add or alter index structures at any 
time without affecting user queries (except, hopefully, for improving 
their speed.)

2. Setting up such structures, along with the file design issues we  
discussed in the previous lecture, constitutes the task of TUNING the 
database for optimal performance.

G. The DBMS itself may create indexes for certain purposes.

1. If an attribute of a table is declared to be the primary key or unique, 
the DBMS may create an index on that key which is used to enforce 
the constraint.  Any time a row is being inserted into the table, the 
DBMS can first check the index to see if the value of a primary key or 
unique attribute occurs there - if so, the new insertion must be treated 
as a constraint violation.

2. Sometimes the DBMS will create a temporary index just for the 
processing of a single query.  We will see examples of this when we 
look at query processing strategies.   
 
If it's small enough, this temporary index may be kept in primary 
storage rather than being kept on disk.  In any case, it is discarded 
when processing the query is done.

II.Types of Indexes

A. Because the requirements for indexes vary, there are a number of different 
types of index structures.   These can be considered in terms of various 
alternatives.

5



B. In an ordered index, the index entries are kept in order of the search key.  
In a hashed index, they are not - a hashing function (as discussed in 
CPS222) controls the order of the entries.   
 
Example: Indexes in books are always ordered indexes - a hashed index 
would be close to useless to people. 

1. An ordered index facilitates range and prefix queries and accessing all 
the rows in search key order.  A hashed index does not.

2. But a hashed index often leads to more efficient access and 
maintenance, for reasons we will see.

C. In a clustering index, the actual data is stored in the order dictated by the 
index.  In a non-clustering index, it is not.   

1. Frequently, the term "clustering" is only used for ordered indexes, but 
technically a hashed index could be used to determined the placement 
of the rows, in which case - of course - they would not be kept in any 
sorted order.   

2. Obviously, a given file can have at most one clustering index

3. A clustering index has both advantages and disadvantages:

a) If the index is ordered, clustering makes range queries much easier, 
because the index need only be used to locate the first row in the 
range, and then subsequent rows are found by following the physical 
order of the data.  
 

Example (a bit contrived).  If you wanted to read the descriptions of 
all the CS courses offered at Gordon, you might use an index to 
locate the first page of the catalog containing course descriptions for 
CS, and then continue from there to read all the descriptions without 
needing to refer to the index again.   

6



b) If the search key is not a superkey, It also makes accessing multiple 
rows having the same search key value easier, because the index 
need only be used to locate the first row having the desired value, 
and subsequent rows are sequentially adjacent.

c) However, a clustering index complicates maintenance, because 
when a row is inserted, it must be inserted at the right physical 
space; when a row is deleted, the vacated space must be 
somehow“closed up”, and if a row is updated and the search key 
value changes, then it must be moved.  (We will look at a structure 
- the B+ tree - that makes this relatively easy, though.)

4. Sometimes a clustering index, if one is present, is called a primary 
index.  Non-clustering indexes are sometimes called secondary 
indexes.  Note that, while a primary index might be based on the 
primary key of the file, it need not be.  (Another place where the same 
word can have two different meanings!) 
 
Example: in a registration system, a Student table (with primary key 
student_id) might be set up with a clustering index based on name 
(rather than student_id) because often things like enrollment lists are 
sorted by name.  In this case, the primary index is not based on the 
primary key.

D. In a dense index, there is one entry in the index for each distinct value of 
the search key; in a sparse index, only some values occur.

1. Only an ordered, clustering index can be sparse.  The idea is that the 
index is used to locate a starting point for a search of the physical data 
(using the largest index entry that is <= the desired value).  Then rows 
are searched in order until the right row is found.

2. Recall that we said earlier that data is physically stored on disk in 
blocks that typically contain several rows of a table.  If there is a 
sparse index for this data, the index typically contains one entry per 
block - the smallest search key value occurring in that block. 

7



 

Example - assume we have a library borrowers table in which 3 rows 
are stored per block (unrealistically low to keep example simple).  
Then a table of 11 borrowers with a clustering index based on last 
name might look like this: 
 

 
PROJECT

E. We've covered a lot of terminology!  To summarize: 
 
 

ORDERED INDEX 
Facilitates exact match search 
Facilitates range or prefix query 
Facilitates order by chosen search key 

HASHED INDEX 
Only facilitates exact match search 
Search and maintenance generally faster 

8



----------------------------- 
DENSE INDEX 

Has one entry for each value of the search key 
 
SPARSE INDEX 

Typically has only one entry for each block of data.  
(Therefore only possible if the index is ordered and  
clustering) 

----------------------------- 
PRIMARY INDEX 

at most one per table 
clustering 
usually ordered - technically can be a hash index, but 

term primary usually taken as implying ordered) 
search key based on may or may not be primary key -  

but often primary key is the one used. 
- if search key is a super key, then any entry leads 
to only one row 
- if search key is not a super key, then any entry 
may lead to multiple rows.  (In this case, must be  
ordered)  

can be dense or sparse 
 
SECONDARY INDEX 

any number per table  
(but must consider tradeoff between benefits  
and space/maintenance cost when deciding 
whether/how many to have)  

never clustering 
can be either ordered or hashed 
can be based on any search key 
must be dense 

 
PROJECT

9



III.B-Tree Indexes

A. The most common data structure used for ordered indexes is the B-Tree.  
Such a structure can be used for both clustering and non-clustering 
indexes.  In the clustering case, the whole table may be stored using a 
variant of the basic B-Tree called the B+ Tree. 

B. BTrees are discussed in depth in CPS222.  We will just discuss them 
briefly here.  We will develop the specific application to a clustering index 
using the B+ Tree variant to store the whole table here.  Note that this is 
not the same as the example in the book.  In this example, the entire 
table is stored in the tree.  (This is appropriate for a primary index, but not 
for a secondary index.) [ The book discusses this option later when it talks 
about B+ tree file organization ]

1. A B+ Tree is a tree composed of two types of nodes:

a) Leaf nodes contain the actual rows of a table

b) Internal nodes contain index information - pairs consisting of a 
search key value and a pointer to a node where that value occurs.

2. B+ Tree indexes are typically multilevel, with all the leaf nodes on the 
same level.

3. The structure is controlled by a numeric value - called the order of the 
tree (n).   

C. This value is determined by the size of a node and the size of a key-value 
pair, such that an internal node can hold at most n-1 keys plus n pointers 
to other nodes.

a) The algorithm will guarantee that each internal node - except the 
root - will have at least ceiling(n/2) children.  The root will have at 
least two children.

10



b) An internal node which contains k keys will have k + 1 children.  The 
keys serve to separate the children in multiway search tree fashion.

c) Of course, leaf nodes will typically hold fewer entries (as 
determined by the size of the node and the size of a table row).   
The algorithm will ensure, however, that each leaf node holds no 
less than ceiling(maximum possible number of values / 2).

2. We will develop this example for a B+-Tree of order 7.  (Much higher 
orders - often in the 100’s - are typical - but we use a small value to 
keep the example simple).  We will assume that each leaf node can 
hold a maximum of 3 table rows.   
 

PROJECT

a) Note that this is a sparse index - possible because it is a clustering one.

b) To search for a key:  
 

start at the root. 
while at an internal node: 
 

If the value being sought is less than the smallest key stored in the node,    
go to the leftmost child 
else 
go to the child corresponding to the largest stored key  
that is <= the desired value (where the second child  
corresponds to the first key ...) 

 

when we get to a leaf node, the desired table row will be in it if it occurs 
at all [ so a simple sequential search of this node can be used to find it ]

(1)Examples:  
 

Search for horse: < penguin, so go left; > gopher but < jackal, so 
go to third leaf;  leaf and found by searching leaf. 
 

Search for hippo: follow same path, but at leaf - not there so not 
in table

11



c) To add a new row: 
 

Use search procedure to find node where it would be if it were present. 
 

if there is room, 
put it there.   
else 
divide the keys in two   
create a new right block to contain half the keys 
“promote” the first key in the right block.  Insert this key, plus a  

pointer to the new right block, in the parent 

i. This may actually cause the parent to split as well, in which 
case we create a new internal node and promote the “split key” 
to the parent. 

 

This process could ultimately lead to the root having to split in 
two, in which case we create a new root that has the two halves 
of the original root as its children   

ii. Examples: 

 

Insert terrance tortoise.  Procedure finds node currently 
containing semantha snake and tommy turtle as the one where it 
belongs, and there is room - so put it there 
 

Insert donald duck.    

 

PROJECT steps

iii.This procedure is guaranteed to preserve the B+ Tree properties

(a)If a leaf node is split, it must have been because the row to 
be added would have resulted in one more than the 
maximum number of rows needing to be stored - in which 
case each half is guaranteed to have at least 
ceiling(maximum number/2).

12



(b)If an internal node is split, there are m+1 children in all 
involved - in which case each half has at least ceiling(m/2) of 
them.

(c)If the root is split, the new root has at least two children.

(d)All leaves are always at the same level.  The only way the 
height of the tree grows is by splitting the root - in which 
case the level of all existing nodes increases by 1 

3. A refinement is to add links from each leaf node to the next, to 
facilitate range queries that span multiple leaves 

 

PROJECT

D. The examples in the book show how B+ Trees can be used for non-
clustering indexes.  Basically, in this case, the leaf nodes hold pointers to 
the disk blocks that contain the actual data. 

 

PROJECT Figure 14.9 in book 
 
Note: pointers can be block numbers, with a search of the block used to 
locate the actual record

E. For large tables, it will be necessary to use multiple levels in a B-Tree 
index.  The example we just did actually entails a root block leading to 
one of several blocks at the next level which in turn lead to the blocks 
containing the data.   Thus it might seem that three disk accesses would be 
required for each lookup - one to the root block, one to the block at the 
next level, and one to the block containing the data.

1. A simple - and very low storage cost - way to reduce the cost from 3 
accesses to 2 is to keep the root block in primary memory at all times 
that we are connected to the database.

13



2. It may even be possible to keep the blocks at the next level down in 
primary memory as well.   This would reduce the cost for a lookup to 
the bare minimum possible - 1 disk access.

3. For very large tables, it may be necessary to add a third level of index blocks, 
which may or may not be possible to store in primary memory. 
 
With a reasonable branching factor, it would take a large table indeed to 
require this many levels of index, though.    Consider the following 
calculation using the assumptions shown: 

 

Assume: index block can have maximum of 200 children 
so minimum is 2 at root; 100 in rest 

 

leaf block can hold maximum of 50 rows 
so minimum is 25Level 0:  

Number of blocks at root: 1 
Level 1: Minimum number of blocks: 2 - each having 100  at least children 
Level 2: Minimum number of blocks: 200 - each having at least 100 children 
Level 3: Minimum number of blocks: 20,000 - each at least holding 25 rows 
So minimum number of rows is 500,000 
 

So using these parameters, any table with less than 500,000 rows would only 
need 2 levels of index! 

 

PROJECT

IV.Hashed Indexes

A. An alternate approach to providing fast access to the record(s) containing a 
given key value is HASHING.   

1. The index can be a clustering one.  In this case, basic idea is this:

a. The file is organized into m buckets, numbered 1..m.

b. A function is devised that maps a value of the search key into an  
integer in the range 1..m.  This function is called the HASH 

14



FUNCTION.  It should have the property that the probability of a 
key mapping to a given value is about 1/m - i.e. the distribution of 
values of the function should be uniform. 

 

Example: A function that generally has this property is (key mod 
m) + 1 - where the key is first converted to an integer if necessary.  
This simple function actually works fairly well if m is a prime 
number, or at least has no small prime factors.

c. When a record is to be stored, the hash function of its key is used to 
decide which bucket it is to be stored in.  

d. To make this work, the file must be designed so that the buckets 
never become completely full.  (About 80% loading is a good rule 
of thumb.) 
 
Nonetheless, there will always be cases where some one bucket 
runs out of room - in which case some sort of strategy is used to 
assign the new record to another bucket.  (Overflow buckets; 
rehashing using a new hash function) 
 
PROJECT Example - hash function used is (sum of ASCII codes of 
letters in first name) mod 11 + 1 - which is not terribly good. 
 
Example: lookup tommy - calculate hash function as 
 
116 + 111 + 109 + 109 + 121 = 566 mod 11 = 5 + 1 = 6 
 - found in bucket 6 
 
Example: lookup terrance - hash function also calculates as 6 - but 
not there, so not in table

2. Hashtables can also be used for non-clustering indexes.  In this case, 
the bucket located by hashing holds key-value pairs, with the value 
being the number(s) of the bucket(s) where the desired row occurs.

15



B. Hashing compared with ordered indexes

1. Hashing can be much faster than use of an ordered index.  A well-
designed hash structure usually allows the desired record to be found 
using a single disk access (for a clustering index kept in memory), or 
two disk accesses (index block plus data in a non-clustering index) 
whereas an ordered index may require more accesses to work down 
through the levels of a tree structure. Also, there is less overhead 
involved in maintaining a hash structure, so insertions and deletions 
are less costly this way. 

2. However, hashing does not support range queries or prefix match 
queries, only exact match queries.  Neither does it support accessing 
the table in the order of its search key. 

3. Finally, an ordered index can guarantee the number of disk accesses 
needed to locate a given item.  With a hashtable, the worst case  
performance may require accessing all the records in the file -  though 
this is very unlikely in practice!

C. Hashing is discussed more extensively in CPS222

V. Specifying Index Structures in SQL

A. The DBMS will sometimes automatically create indexes for a table - 
either permanent indexes or temporary ones used just during the 
processing of a single query.  . 

1. As an example, db2 automatically creates an index for any column (or set 
of columns that are declared to be the primary key of a table or are 
declared unique (hence a candidate key).  Why do you think it does this? 
 

ASK 
 

If a column is declared to be a primary key or unique, the DBMS must 
enforce the rule that no two rows can have the same value for this 
column.  This means that, when a row is inserted or updated, the DBMS 

16



must check to be sure the value does not already occur in the table.  
Absent an index, this would require scanning through the entire table - a 
very cumbersome process with a large table.  With an index, the problem 
reduces to checking the index to see if an entry occurs.  (Contrast 
checking some book to see if it discusses a certain topic by using the 
index, versus reading through the entire book looking for a certain word!)

2. We will talk about temporary indexes later, when we talk about query 
processing “optimization”.

B. SQL includes a create index statement that can be used to manually create an 
index.  The DBA can do this if it is known that a particular column will 
commonly be used as a search key for queries or as the join column in natural 
joins.

1. Though the basic syntax is the same, details of the options provided by 
this statement vary quite widely from system to system. 
 

Example: PROJECT create index syntax for db2, mysql.

2. For our library database, what indexes might be appropriate? 
 
Decomposed scheme: 
 

Borrower(borrower_id, last_name, first_name), 
Book_title(call_number, title), 
Book_author(call_number, author) 
Book( call_number,  copy_number,  accession_number, 
         borrower_id, date_due)  
 

ASK 

 

Borrower: borrower_id for sure (natural joins); maybe last_name 
Book_title: call_number (natural joins) 
Book_author: call_number (natural joins) 
Book: call_number + copy_number (to facilitate checkout/return) 

 
 
 

17



|db2 would create all but one of these as a result of primary key 
constraints.  Which would need to be created manually? 

 

ASK 

 

call_number index on Book_author

3. Demo: create Book_author table as above, then index.  
 
create table book_author  

(call_number char(20), author char(20));  
create index ba_call on book_author(call_number);  

18


