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CPS220 
Decidabil ity 

 
Review 
 
We have learned about Turing Machines, which are Finite Automata (DFA, or NFA is 
equivalent) with an infinite tape that contains the input plus infinite blank space. The 
head of the TM can move left or right, and overwrite on any position. 
 
A Turing Machine T recognizes a language L if T accepts every string in L, and never 
accepts a string not in L. However, a Turing Machine is not guaranteed to halt, if given 
an input not in L. 
 
Turing Machines that halt in all inputs are called deciders. T decides a language L if T 
recognizes L, and halts in all inputs. That is, a decider T is guaranteed to either accept, or 
reject, and never fall into an infinite loop. 
 
Languages recognized by a TM are called recognizable.  
Languages decided by a TM are called decidable. 
 
The Church-Turing Thesis formalized the notion of an algorithm, as a procedure that can 
be performed by a decider TM. Church’s Thesis states that all sufficiently powerful and 
reasonable models of computation belong to the same class.  
 
Turing Machine 

- it’s alright to use a high-level description instead of a detailed description 
- TM take as input strings – which can encode any thing – numbers, graphs, etc. 
- <O> notation for an encoded string 

 
By accepting Church’s Thesis we are able to prove that certain problems are unsolvable 
(undecidable) by any computer. 
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Decidable Languages 
 
Consider the following language about DFAs: 
 
Adfa = { <M, w> | M is a DFA accepting input w} 
 
Is this language decidable? That is, given as input, a DFA and a string, can we decide 
whether the DFA accepts the string? The answer is yes. 
 
Theorem. Adfa is decidable. 
 
Proof. We construct a TM T, deciding Adfa. 
 
T = “On input <M,w>, after syntax check, 
 1. Simulate M on input w 
 2. If the simulation ends in an accept state, accept – otherwise, reject.” 
 
Input would be the 5 tuple description of the DFA – the TM would keep track of the 
current state and process the input tape based on transition function and finally accept if 
the string’s final state is accept. 
 
 
 
Anfa = { <N, w> | N is an NFA accepting input w} 
 
Theorem. Anfa is decidable. 
 
Proof. T’ = “ On input <N, w>, after syntax check, 

1. Convert N to a DFA M. 
2. Run T from proof above, on <M, w> 
3. If T accepts, accept. Else, reject.” 

T 
 
 
 Accept 
 
 Reject 
 
 
 
 
 
 
AREX = { <R,w> | R is a regular expression that generates string w } 
 
Theorem. AREX is decidable. 

NFA 
Convert  
To DFA 

T’
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EDFA = { <M> | M is a DFA and L(M) = Ø } 
 
Theorem. EDFA is decidable. 
 
Proof. The following machine decides it: 
 
T := “On input  M, where M is a DFA, 
 1. Mark the start state of M. 
 2. Repeat until no new states are marked in an iteration through all states: 
  - Mark any state that has a transition coming from a marked state 
 3. If no accept state is marked, accept; otherwise reject.” 
 
 
EQDFA = { <M1, M2 > |  M1 & M2 are DFAs and L(M1) = L(M2)} 
 
Theorem. EQDFA is decidable. 
 
Proof Idea: given two automata M1 and M2, the TM S will construct a new automaton 
that accepts the strings accepted by either M1, or M2, but not both. Then, S will simulate 
the machine T from previous proof, on automaton M. 
 
(see page 169)
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ACFG = { <G, w> | G is a CFG deriving string w} 
 
Theorem. ACFG is decidable. 
 
Proof. T = “On input <G, w> 

1. Convert G to Chomsky Normal Form. 
2. Test all possible derivations of length 2n-1, where n = |w|. 
3. If any generate w, accept, otherwise reject.” 

 
Example: 
 
S0AB|AB|BA 
S AB|AB|BA  
Bb 
Aa 
 
 
Theorem. Every Context Free Language is decidable. 
 
Proof. Let L be a CFL, and G be a CFG generating L. 
 
We build a TM D, deciding L: 
 
D = “On input w, 
 Run T on input (G, w) 

Accept if T accepts, reject otherwise.” 
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Here is the picture of language classes we have seen so far: 

 
 
ECFG = { G | G is a CFG and L(G) = Ø } 
 
Theorem. ECFG is decidable. 
Proof. The idea is to mark from bottom up all nonterminals that generate any string of 
terminals. In the end, if S is marked, G generates a string and so G ∉ ECFG. (see page 171 
for an example) 
 
EQCFG = { G, H | G and H are CFLs and L(G) = L(H) } 
 
As we will see later on, EQCFG is not decidable. 
 
 
 
The Halting Problem 
 
The Halting problem asks whether a given Turing machine M accepts a given string w: 
 
ATM = { <M, w> | M is a TM that accepts w } 
 
Theorem. ATM is undecidable. 
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Before we prove that, we prove another (easier) result. 
 
Theorem. ATM is Turing-recognizable. 
 
Proof. The following TM U recognizes ATM: 

1. Simulate M on input w 
2. If M ever enters its accept state, accept; if M ever enters its reject state, reject. 

 
 
Note: this machine loops on <M,w> if M loops on w – therefore it only recognizes ATM. 
 
 
SERIAL NUMBER OF THE TM 
 
    * Unary def. The unary representation of decimal 1,000,000 needs only one type of 
symbol, but that symbol is repeated a million times. 
    * Let the states be designated in UNARY NOTATION WITH ZEROES ... meaning n 
is encoded as a string of n zeroes as below. 
 
                state 1 = 0 
                state 2 = 00 
                state 3 = 000   
                ... 
                state12 = 000000000000 
                etc. 
 
    * Let the input and output characters in an alphabet of n symbols be represented 
likewise, with an appropriate coding scheme. For example, in all of our examples, the 
standard input and output sets will be, 
 
          Σ = Γ = {0, 1, b}  
 
      which leads to 
                 0 = 0 
                 1 = 00 
                 b = 000 
      If we chose to include other special characters, we could define them likewise. For 
example, 
          Σ = {0, 1, b, #, $}  
      gives 
                 0 = 0 
                 1 = 00 
                 b = 000 
                 # = 0000 
                 $ = 00000 
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      for the input characters. 
 
    * Let the direction be represented: 
                 Left = 0 
                 Right = 00 
 
Then separate the pieces of the 5-tuple with spacing 1's. SO .... (1,0,b,R,2) becomes: 
 
    0 1 0 1 000 1 00 1 00  
 
Then, list all the rules, separated by 11: 
 
    0101000100100 11 0100100010010000 11 etc.  
 
Then surround the entire collection with 111's and we have a Turing Machine definition 
in binary. This is often called the SERIAL NUMBER of the TM. 
 
 
UTM 
 
The Universal Turing Machine. This machine begins with the serial 
number for any TM, P, and the input, x, to P and then simulates the 
output for P(x). 
 
In other words, UTM is an interpreter for Turing Machines. It will 
simulate the action of any other TM.  
 
 
 
  
 
 P(w) 
 
 
 
 
 
 
 
 
 
 
 
 
 

P (encoded TM) 

UTM

 

w 
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HALTING PROBLEM restated 
 
ATM = { <M, w> | M is a TM that either accepts or rejects w } 
 
Theorem. ATM is undecidable. 
 
 
 
Helpful programmer utility if it existed: 
 
 
 
 Doesn’t Halt 
 
 Halts 
 
 
 
 
 
However H does not exist.  
 
PROOF -   Proof by contradiction.  
========================= 
Step 1. Assume H exists. 
 
H is a machine which uses two inputs on the tape: 
 
    The serial number of the program, P, to be checked 
    The input, s, to P  
 
H always halts and correctly answers: 
 
    Y, if P(s) eventually will halt 
    N, if P(s) will run forever 
 

 
 
========================= 
Step 2. Create a machine called H'. 
 

P (encoded TM) 

H

 

w 
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Use the powerful machine H to build the following machine, H': 
 
    input: The serial number of the program, P, to be checked 
 
    algorithm: 
 
    1. Use the COPY TM to duplicate the initial string. For example, the program P might 
be represented as 
 
            1110101010010111  
 
        on the input tape. In this case, the tape is modified to 
 
            1110101010010111#1110101010010111bbbb  
 
        Thus, the tape now contains the serial number of the machine P to represent a 
machine, and the serial number of P to represent input to the machine. P is using itself for 
input. 
 
    2. Send P#P into the H. H will determine whether the machine will eventually halt 
given its own serial number as input. The result will be boolean (Y or N). 
 
    3. If the result from H is Y, 
                then send the machine into a deliberate infinite loop 
            else 
                force the machine to halt. 
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Trivial and true parts of this machine: copy a tape, go into a deliberate infinite loop, and 
to halt immediately. 
 
Now, ..... here's the magic ......, what happens after we build H' and determine its serial 
number if we send H' into H' as x? 
 
    If H' will run forever on H' as input, then H' stops. 
    If H' will halt on H' as input, then H' runs for ever. 
 
CONTRADICTION: 
Since all parts of H' are trivial except H, it follows that the initial assumption that H 
exists is incorrect. 
 
 
DIAGONALIZATION 
 
Now we make a short digression into a mathematical topic, that of countable & 
uncountable sets, and the diagonalization method. 
 
Definition. A function f: A → B is 

• One-to-one, if a ≠ b implies f(a) ≠ f(b). 
• Onto, if for every b ∈ B, there is an a ∈ A such that f(a) = b. 

 
Definition. Two (possibly infinite!) sets A and B are of the same size if there is a one-to-
one and onto function f: A → B. 
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Example: The sets A = { mouse, cat, dog },  B ={ cheese, mouse, bone } are of same size 
because there is an obvious one-to-one and onto function f: A → B. 
 
Example. The sets N = { 1, 2, 3, 4, ….. } and Q = { 2,4,6,8… } are of the same size.  
Why?  Because we can map the first number to the first even number and the second 
number to the second even number, etc. 
 
Definition. A set is countable if it is the same size as N = { 1, 2, 3, 4, …. } 
 
Theorem. The set of real numbers is uncountable.  
(see proof in textbook – x ≠ f(n) for any n) 
 
Theorem. The set of real numbers between 0 and 1, R, is uncountable.  
 
Proof. This is an example of the diagonalization method.  
 
Let’s represent the numbers between 0 and 1 with decimal digital notation, as .xyzw… 
where x, y, z, w, … are among 0, …., 9.  
 
Say that there is a function f: N → R. Let’s draw this function: 
 
f(1) = .x11 x12 x13 x14 ….. 
f(2) = .x21 x22 x23 x24 ….. 
f(3) = .x31 x32 x33 x34 ….. 
f(4) = .x41 x42 x43 x44 ….. 
… 
 
So, f(i) = .xi1 xi2 xi3 xi4 ….., for any i ≥ 1. 
 
Then, consider the following number: 
 
Let yij = 5, if xij ≠ 5, and 6, if xij = 5. 
 
r = .y11y22y33y44y55…. 
 
Then, for any i, r ≠ f(i). In particular, r and f(i) always differ in the ith digit. 
 
The above proof technique is called the diagonalization method. 
 
Theorem. The set of all finite strings over Σ is countable. 
 
Proof. (sketch) To list all strings, start by listing all strings of length 1, then all strings of 
length 2, etc. Σ = {0,1} length 0 – e; length 1 – 0,1; length 2 – 00, 01, 10, 11, length 3… 
 
Theorem. The set of all languages over Σ is uncountable. 
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Proof. Take all strings over Σ. This set is an infinite countable set which is the same size 
as { 1, 2, … }. A language L can be uniquely described by a binary number between 0 
and 1, .x1x2x3…, where xi = 1 if the ith string over Σ is in L, and 0 otherwise. This is a 
map which is one-to-one and onto. Since the numbers between 0 and 1 are uncountable, 
so are the languages over Σ.  Infinite binary sequence is uncountable. 
 
 
 
Theorem. The set of Turing Machines is countable. 
 
Proof. For any given machine, we can give a full description of the machine with a finite 
string. M = (Q, Σ, Γ, δ, q0, qacc, qrej), and each of the elements of the 7-tuple is finite. The 
function δ for example, is δ: Q × Γ → Q × Γ × { Left, Right }, and can be written down 
as a sequence of |Q| × |Γ| × |Q| × |Γ| × 2 = 2 |Q|2 |Γ|2 5-tuples (qa, x, qb, y, d).  
 
Corollary. There are some languages that are not Turing-recognizable. (!!) 
 
Proof. If not, then there would be a map from the set of languages, to the set of Turing 
Machines that recognize them. That is impossible because the set of languages is 
uncountable, and the set of Turing machines is countable. Therefore, some languages are 
not recognized by any Turing machine. 
 
 
 
 
Theorem. The Halting Problem, ATM, is undecidable. 
 
Proof.  Let’s assume that a Turing Machine H decides ATM.  
  
On input (M, w), H accepts if M accepts w, H halts and rejects if M does not accept w. 
 
We will use diagonalization to derive a contradiction. Consider the following matrix: 
 
On the rows, let’s list all the TMs M1, M2, … . For example, we can list them 
alphabetically according to their description. 
 
On the columns, let’s list all the possible strings ∈ Σ (e.g., s1 = 0, s2 = 1, s3 = 00, s4 = 01, 
s5 = 10, s6 = 11, ….). 
 
On each cell (i,j), if machine Mi accepts string si, then put a 1. Otherwise (if Mi rejects or 
loops forever), put a 0. 
 
 S1 s2 s3 … 
M1 0 0 1 … 
M2 1 0 0 ... 
M3 0 0 1 ... 
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… … … … …  
 
The machine H can decide for any column (i, j), whether the value in the column is 0 or 
1. Now construct the following machine D that uses H as a subroutine: 
 
D = “On input (M), where M is a Turing Machine and (M) is a finite string describing M, 
 1. Run H on input (M, (M)) 
 2. If H accepts, then reject. 
     If H rejects, accept.” 
 
Notice that since H always halts with either acceptance or rejection, D always halts. 
However, D cannot be listed on the table. The reason is that on column (D, (D)), D 
cannot contain a 0 or a 1: If (D, (D)) is 0, then D rejects input (D). Therefore by 
definition of H, H has to reject (D, (D)). But then by definition of D, D has to accept (D), 
contradiction. Similarly, if (D, (D)) is 1, then we reach a contradiction. 
 
Therefore, D cannot exist. But D would be easy to construct if we had H. Therefore, H 
cannot exist. Therefore ATM is not decidable. 
 
 <M1>  <M2>  <M3>  <M4>   <D> 
M1 accept  reject  accept  reject   accept 
M2 accept  accept  accept  accept   accept 
M3 reject  reject  reject  reject   reject 
M4 accept  accept  reject  reject 
. 
. 
. 
D reject  reject  accept  accept       ? 
 
 
 
Closure Properties of Decidable and Recognizable Languages 
 
Theorem. Closure properties of Decidable languages. The class of decidable languages is 
closed under Union, Concatenation, Star, Intersection, and Complementation. 
 
Theorem. Closure properties of Recognizable languages. The class of recognizable 
languages is closed under Union, Concatenation, Star, and Intersection. 
 
Note: the complement of a non-decidable language is never decidable. 
 
 
 
Are there any languages that are not even recognizable? Yes—the following theorem 
shows how to get such a language. 
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Theorem. A language is decidable if and only if it and its complement are recognizable. 
 
Proof.  If a language is decidable, then its complement is decidable (by closure under 
complementation).  
 
For the other direction, let L and L  be recognizable by M1 and M2, respectively. We 
construct machine M that decides L: 
 
M := “On input w, 
 Set n = 1 
 1. Simulate M1 on w for n steps. If it accepts, accept 
 2. Simulate M2 on w for n steps. If it accepts, reject 
 3. Increment n and go to step 1” 
 
Either w ∈ L, or w ∈ L . Therefore either M1 or M2 will halt in a finite number of steps. 
Therefore M will halt in a finite number of steps. 
Theorem. The language 

TM
A  = { (M, w) | M does not accept w } is not recognizable.  

 
Proof. ATM is recognizable. If 

TM
A  was also recognizable, then both languages would be 

decidable. But ATM is not decidable. 
 
 
 
 
 
 
 


