
CPS311 Lecture: CPU Control: Hardwired control and Microprogrammed 
Control

Last revised October  7, 2013
Objectives:

1. To explain the concept of a control word
2. To show how control words can be generated using hardwired control
3. To explain the concept of microprogramming
4. To discuss the use of a RISC core in a CISC processor

 Materials: 

1. Projectable Version of Diagrams
2. MIPS Simulation
3. Code for Lab 5 - part 1 to demonstrate using microprogramming

I. Introduction

A. We have seen that a CPU - whether simple or complex - basically consists  
of a control unit, plus a data part, encompassing:

1. A set of registers (including registers that interface to the system  bus)      

2. A set of D-units (adders, shifters etc.)

3. A set of data paths connecting the above.

4. An interface to the "outside world" (memory, IO) - usually some sort         
of bus system.      

(We continue to assume a single instance of all components shared by all 
steps of instruction execution, and sequential execution of instruction        
steps.  When we discuss pipelining and other forms of parallelism, we        
will see that some components will have to be replicated.)   

B. The data part is capable of performing a set of microoperations or       
primitive computations that can be performed in one cycle (clock pulse).  
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Each microoperation changes the contents of a single register.   An 
instruction in the user-visible instruction set must be programmed as a  
series of microoperations (some of which may be done in parallel on the 
same clock pulse.) 

C. Control of the system is accomplished by a control unit that - at the start of each 
clock cycle - activates the necessary control functions to cause the data part to 
perform the desired microoperation(s) on the next clock pulse.  In the case of a 
multi-cycle CPU implementation (where a given component may perform different 
tasks on different cycles), this can  be pictured as follows: 

PROJECT
Control Unit ALU,  register 

set, and 
datapaths

Control Signals
(called the
control word)

Memory

Address

Data

CPU
Clock

D. The set of control signals that pass from Control to the data part and 
bus  system is called a micro-word or control word.  Conceptually, 
each bit of  this micro-word corresponds to the enabling of one 
particular microoperation that some system component can perform.   
(In practice,  sometimes groups of bits are used to select from a set of 
mutually-exclusive options - e.g. the selection inputs to a MUX)   

E. The job of the control unit designer for such a CPU is to develop a       
means whereby an orderly sequence of control words may be 
presented to the data part (and other hardware such as the memory) - 
one per clock pulse. 
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F. Historically, there have been two basic ways such a sequence of 
control words has been generated:      

1. Hardwired control: The control unit is implemented as a state 
machine,  with combinatorial circuits generating each of the 
control functions   on the basis of the current state and certain 
variables such as the  op-code of the user instruction undergoing 
execution. 

In machines that use a memory-memory or memory-register model 
for  operations, the state machine may have two levels of states: 
major states, each of which is broken up into minor states.  A given 
major  state will consist of a series of minor states.

a) The major states may correspond to the various phases of 
instruction execution, or each major state may correspond to a      
single access to memory as part of instruction execution.

b) Either way, the minor states correspond to the individual steps            
for a major state - e.g. if a certain major state requires three            
successive microoperations, then it will have three minor states.

2. Microprogrammed control.  The various control words needed to         
implement the user instructions are stored in a ROM, with a 
sequencer causing the appropriate control word to be fetched at 
each clock cycle and fed to the rest of the CPU.

V. An Example of Hardwired Control

A. To get some feel for what is involved in hardwired control, we will      
discuss a hardwired control unit for our multicycle MIPS simulation. 

B. Observe that, in the RTL specification for this machine we discussed 
earlier, almost all instructions require exactly 4 cycles to fetch and 
execute.  (One - j - requires only two - one  for fetch and one for 
execute).  
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For simplicity, we will allocate 4  cycles to every instruction - thus 
wasting two on j. 

1. Our state machine then looks like this:

PROJECT

Cycle 0 Cycle 1 Cycle 2 Cycle 3

a) The simplicity of the state machine for MIPS is a consequence            
of the regularity of the instructions, which in turn is a            
characteristic of the ISA designed to facilitate a pipelined            
implementation.  (The ISA makes this part of the 
implementation  easy)

b) Actually, a full implementation would need additional states            
to deal with issues like interrupts and exceptions.

c) This simplified state machine can be realized by a 2 bit counter,            
with its output decoded to yield 4 signals used internally in the            
control unit. 

PROJECT

2 bit
counter

1 out of 4
decoder

CYCLE0

CYCLE1

CYCLE2

CYCLE3

2. A CISC would require a much more complex state machines.
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C. We will now explore the MIPS simulation in more detail.  The control 
word for this simulated implementation contains 17 bits.      

1. The meaning of the bits is as follows

(Project simulation, set to Manual control)

a) Some enable the loading of various registers (IR, PC, General)            
(Note that the ALU Input and Output registers are loaded on 
every cycle - there is nothing to be gained by having enables for 
them,   since they can just be ignored when they're not needed.) 

b) Some control the various MUXes.  These may be single bits 
(for a 2-way MUX) or groups of bits - PC Source (2), Memory 
Address,  Register Source, ALU Source A, ALU Source B (2).

c) One group of 2 controls _how_ the general register to be loaded 
(if  there is one) is specified - i.e. a MUX that controls the input            
to the decoder that load-enables the correct register. 

d) One group of 3 controls the ALU Function (i.e. the internal 
MUX in the ALU)

e) There is one bit each to control memory read and memory 
write.      

2. Each of these bits can be derived by a combinatorial network 
whose  inputs are the current state of the machine plus certain 
fields in the IR.  It will simplify the design work if we assume that 
the opcode bits in the IR are connected to a 1 out of 64 decoder, 
with exactly one line being asserted for any given instruction (or 
none  if the instruction is undefined)

PROJECT 
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1 out of 64
decoder

op code
portion
of IR
(6 bits) ...

RTYPE(0)
...
J (2)
JAL (3)
BEQ (4)
BNE (5)
...
ADDI (8)
ADDIU (9)
SLTI (0xa)
SLTIU (0xb)
ANDI (0xc)
ORI (0xd)
XORI (0xe)
LUI (0xf)
...
LW (0x23)
...
SW (0x2b)
...

...

...

(A full implementation of the ISA would have many more!)

3. The function to be realized by each network is determined by  
examining the RTL to see what value of the bit is implied by         
each. 

a) Example: the Load IR bit.  This is 1 on Cycle 0 of all 
instructions,  and 0 everywhere else.  Thus, we can derive this 
bit as 

CYCLE0 LOADIR  

b) Example: the Load PC bit.  This is 1 in four places, and 0            
everywhere else 

(1)Cycle 0 of all instructions

(2)Cycle 1 of j, jal

(3)Cycle 3 of jr 

(4)Cycle 3 of beq/bne if and only if the branch condition ismet 
Thus, we can derive this bit as:
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PROJECT

c) This same process can be continued for each bit of the control            
word.  To simplify design, we can take advantage of don't-
cares.   Example: if LOAD_PC is 0, then we don't care about the 
value of  PC_SOURCE  It turns out we can make this 0 (PC + 4) 
on Cycle 0, 1 (IR J-Format constant) on Cycle 1,  3 (ALU Out) 
on Cycle 3, and we don’t care what value it has on Cycle 2, 
since this yields the correct value whenever LOAD_PC is 1 and  
is ignored otherwise 

d) etc.

4. When we looked at the execution of the program for Lab 5 Part I in 
the last lecture, we were actually looking at the control words 
generated by a simulated hard-wired control unit.
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VI.Microprogramming-

A. As you can see, for even a very simple machine like the one we just      
looked at, hardwired control leads to very complex control logic.  For 
a more complex machine, the control-unit complexity would make 
hardwired control virtually impossible.  Thus, as computers became 
more complex, they began to use microprogramming as a means of 
keeping the complexity of control within limits (at the cost of a 
somewhat slower execution cycle.)

B. The basic idea is this: we build the control unit around a small, very       
fast memory (not visible to the programmer.)

1. The width of this memory is equal to the width of the control word,          
plus some additional bits we will discuss shortly. 

2. We store the various control words in the memory (which is 
therefore  called the CONTROL STORE).  We connect the output 
of the memory to the control inputs of the ALU, data paths, etc.

3. On each clock, we fetch a control word from control store and use 
it to determine what the ALU etc. do on that clock. 

4. We use a simple device called the SEQUENCER to arrange for the 
correct sequence of control words to be fetched.  (The additional 
bits in each word in control store are used to control the 
sequencer.)

5. The control store is generally a ROM; but it is also possible to use          
a writeable memory (PROM or RAM) for the control memory.  
This allows for:

a) Dynamic microprogramming - e.g. for adding custom user 
instructions to the standard set or emulating another machine.
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b) Diagnostics - a microprogram that exercises a suspected portion 
of  the circuitry one micro-operation at a time may be loaded to 
assist  in the isolation of hardware flaws.

C. A micro-programmed implementation of our example MIPS machine. 
(Note: this is strictly hypothetical to illustrate how it could be done.  
Actual MIPS implementations do not use microprogramming)

1. Structure of the control unit.  (All micro-programmed CPU’s use a 
structure like this, but of course the specific sizes will vary) 

PROJECT

Register to hold a word read from control store

17 bit control word to
ALU and data paths

Control store
address register
(CSAR) 9 bits

Sequencer

    

a) On each clock, the address in CSAR selects one of the words in 
the control store (note: 512 = 29).  This word is read from 
control store into a register that is part of the control store.
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b) This word has the following format:

Sequencing control
(11 bits)

Control word to ALU and
data paths (17 bits)

(1)Part of this word (17 bits in this case) comprise the control 
word which is sent to the ALU and data paths.

(2)Part of this word (11 bits in this case) serves as input to a 
sequencer, which determines the address of the next 
microinstruction to be executed and places it in CSAR.

2. The sequencing control part of the word contained in control store 
would need two fields

a) A 9 bit next micro-word address field that contains the address 
of the next microword.  (Thus, each microword explicitly 
contains the address of its successor).   This field is called 
"next".

b) A 2 bit field used to allow branching in the microprogram -               
we'll discuss this shortly.  This field is called "decode". 

OMIT THE FOLLOWING (THROUGH P. 14) IF INSUFFICIENT 
TIME

3. Sequencing could be handled as follows:

a) Ordinarily, decode is 0 and next contains the address of the next 
control word.

b) If decode is non-zero, then some additional values are “orred” 
with next to form the address of the next instruction.
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Decode	

 Orred with next

01	

 op of the instruction contained in IR, multiplied by
	

 4 (therefore in the range 0 .. 11111100)
10	

 func field of the (R Type) instruction contained in 
	

 IR (therefore in the range 0 .. 11111)
11	

 Result of comparison between registers selected by
	

 rs and rt (0 if not equal, 1 if equal)

This allows a form of conditional branching in the micro-
program - e.g. if next contains 100000000 and decode is 01 and 
op in the IR is 000101 , then the next micro-instruction to be 
executed will be taken from location 100000000 or 00010100 = 
100010100 in control store.

4. Control store could be organized as follows.  (Note that quite a few 
locations in control store are unused - the structure is set up to 
facilitate  quick computation of addresses by or-ring bits, rather 
than by  doing addition (which takes more time).

a) Words 0-1: microprogram for fetching and decoding an 
instruction               

b) 0x100 .. 0x1ff: Control words for executing the various 
instructions - up to 4 per instruction.  (Actually, each instruction 
needs at most 3, but 4 is a  power of 2 and allows us  to 
multiply the op-code by shifting)

The control words for a particular instruction are a the four 
successive locations beginning at 0x100 + 4 * opcode.     

c) 0x80..0xbf: Final control word of RType instructions (handled 
separately because the last control word for JR is different from 
other RType instructions)

The final control word for a particular RType instruction is at 
address 0x80 + func.
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d) Most of the remaining locations in the range 2..0x7f are unused.  
However, a few instructions needs some additonal control 
words which could go anywhere - e.g.

4-5: Final control word of beq instruction - first for registers not 
equal (don't branch); second for registers equal (branch)

6-7: Final control word of bne instruction - first for registers not 
equal (branch); second for registers equal (don't branch) 

5. We now consider what the beginning of the microprogram for 
MIPS might look like:

Location in	

 Contents
control store              

000000000	

 Control word: IR <- M[PC], PC <- PC + 4
	 Next: 000000001
	

 Decode: 00
000000001	

 Control word: (all zeroes)
	 Next: 10000000
	

 Decode: 01 (op)

These two control words cause the next machine language 
instruction to be fetched from memory, and the program counter to 
be updated.  Then, the instruction just fetched is decoded by orring 
its op-code (times 4) with 100000000 - which causes a branch to 
the appropriate portion of the microprogram for executing that 
instruction.

a) We can't decode an instruction as part of 000000000 because 
the opcode is not loaded into the IR until the clock at the end of 
the cycle, which is the same time we need to load a new address 
into  CSAR, and thus cannot be used to help determine that 
address.)
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b) This appears wasteful because it adds an extra cycle to each           
instruction.  (I.e. most instructions now use 5).   In practice, a 
richer ISA has operations that can be done speculatively at this 
point - e.g. MAR <- Address portion of instruction - 
not needed for every instruction but needed for enough to mak 
it worthwhile

6. DEMO: Lab 5 Part 1 program - note values in next / decode / 
CSAR at each step.

D. Advantages/disadvantages of micro-programming

1. Advantages 

a) Great sophistication in the user instruction set can be achieved 
for relatively low cost.  Adding new instructions is cheap.   
(This makes complex instruction sets possible - using 
hardwired control for a typical CISC ISA would be impractical 
due to the complexity).

b) Multiple user instruction sets can be available on the same 
machine.  This allows a new machine to emulate a previous 
model to aid in  the conversion process - e.g.

(1)Early IBM 360's contained microcode to emulate 1401's 
and/or 1620's 

(2)Early DEC VAX's emulated PDP-11's. 

(3)DEC Alpha's used a form of microcode (though different 
from what we have discussed here) to emulate VAX's.

c) New architectures can be tried out by simulating them using 
writeable control store on an existing machine.  Special micro-
engines have been built for just this kind of work. 
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d) Micro-code can be written to allow direct execution of high-
level  languages - e.g. LISP, Pascal.

e) For specialized applications (e.g. real-time systems), critical 
loops can be microprogrammed for faster execution time.

f) Micro-programmed diagnostics.

g) Bit-sliced processors, allowing implementation of custom machines.

2. Disadvantages 

a) For a given level of technology, hardwired control will be 
faster,  since there is no delay for micro-instruction fetch from 
ROM before  the control unit can produce a control word.

b) Does not lend itself well to parallelism.

3. Though some CISCs today are micro-programmed, high 
performance systems use another strategy (which the book called 
vertical microprogramming, though that’s really referring to 
something quite a bit different which we won’t discuss).

RESUME HERE IF NECESSARY TO OMIT THE ABOVE DUE TO 
TIME

VII.Implementing a CISC with a RISC core

A. High-performance CISCs (e.g. the Pentium) cannot be built using 
hardwired control, due to the complexity, and are not built using 
microprogrammed control, for performance reasons.

B. Instead, the following is the way a high-performance CISC may be 
structured.  (Note: there’s not a lot of detail available about this 
structure, because manufacturers in a competitive industry don’t tend 
to publish a lot of details about the internals of their systems!)
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RISC Core(s)

CISC Instruction fetch unit

Translator that converts a CISC instruction
into a series of RISC instructions

1. That is, inside a high-performance CISC is a RISC core (or, in 
some cases two).  The RISC cores use standard performance 
enhancement techniques such as pipelining to maximize 
performance.

2. CISC instructions are fetched by an instruction fetch unit 
according to the rules of the CISC ISA.

3. Each CISC instruction is then translated into one or more RISC 
instructions, which are executed by the core(s).

C. In a system like this, the only ISA the programmer ever sees is the 
CISC ISA - the ISA of the RISC core is completely shielded from 
view.
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