Dense matrix algebra and libraries

(and dealing with Fortran)

CPS343

Parallel and High Performance Computing

Spring 2020

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 1/35

@ HPC == numerical linear algebra?
@ The role of linear algebra in HPC
@ Numerical linear algebra

© Matrix-matrix products
@ Rowwise matrix-matrix multiplication
@ Recursive block oriented matrix-matrix multiplication

© Dense Matrix Linear Algebra
e BLAS
e LAPACK
e ATLAS

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 2/35

Outline

@ HPC == numerical linear algebra?
@ The role of linear algebra in HPC

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 3/35

HPC == numerical linear algebra?

Perhaps the largest single group of HPC applications are devoted to
solving problems described by differential equations.
@ In these problems there is typically a domain, which may be space,
time, both of these, or something else altogether
@ The domain is discretized, resulting a system of equations that must
be solved
@ These equations are often linear so techniques from numerical linear
algebra are used to solve them

@ When the equations are nonlinear we may be able to linearize them
(treat them as linear on a portion of the domain) to get the solution
part-by-part

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 4/35

HPC != numerical linear algebra?

Some of the problems that can lead to differential equations and linear
systems as well as others that don’t involve differential equations can be
be approached in completely different ways.

Two important examples:
@ simulation by Monte Carlo methods
@ dealing with data: searching and sorting

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 5/35

Numerical linear algebra libraries

@ As we've seen in the case of matrix-matrix multiplication, standard
“textbook” algorithms are often not the most efficient
implementations

@ In addition, they may not be the most “correct” in the sense of
keeping errors as small as possible

@ Since it's important to “get it right” and “do it fast,” its nearly
always advisable to use numerical libraries of proven code to handle
linear algebra operations

@ Today we'll focus on a few important libraries. There are many
others, and you should always look for available appropriate libraries
that can help as part of tackling any programming problem

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 6/35

Outline

@ HPC == numerical linear algebra?

@ Numerical linear algebra

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020

Vector operations

Key operations yielding vectors include:

@ copy one vector to another: u < v

@ swap two vectors: u = v

@ scale a vector by a constant: u < au

@ add a multiple of one vector to another: au+v
Key operations yielding scalars include:

@ inner product: u-v =73 . u;v

@ 1-norm of a vector: ||ufly =), |uj|

@ 2-norm of a vector: ||ul|z = />, u?

e find maximal entry in a vector: ||u||ec = max; |u;]

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 8/35

Matrix-vector operations

Key operations between matrices and vectors include:
@ general (dense) or sparse matrix-vector multiplication: Ax

e rank-1 update: (adds a scalar multiple of xy” to a matrix): A+ axy’
@ solution of matrix-vector equations: Ax = b

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 9/35

Matrix-matrix operations

Key operations between pairs of matrices include:
@ general matrix-matrix multiplication
@ symmetric matrix-matrix multiplication

@ sparse matrix-matrix multiplication

Key operations on a single matrix include:
e factoring/decomposing a matrix: A= LU, A= QR, A= UXV*

e finding the eigenvalues and eigenvectors of a matrix

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 10/35

Outline

© Matrix-matrix products
@ Rowwise matrix-matrix multiplication

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 11/35

Rowwise Matrix-Matrix Multiplication

The rowwise matrix-matrix product for C = AB is computed with the
pseudo-code below.

fori =1to ndo
forj=1tondo
C,'j =0
for k =1 to ndo
Cij = cjj + a,-kbkj
endfor
endfor
endfor

Notice that both A and C are accessed by rows in the innermost loop
while B is accessed by columns.

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 12/35

Effect of memory hierarchy sizes on performance

The graph below shows GFLOP /s vs matrix dimension for a rowwise

matrix-matrix product. The drop-off in performance between N = 300 and

N = 400 suggests that all of B can fit in the processor’s cache when

N = 300 but not when

@ A 300 x 300 matrix

double precision floating
point values consumes
approximately 700 KB.

N = 400.

matrix-matrix product for NxN matrix (Minor Prophets)

using

o A 400 x 400 matrix
needs at least 1250 KB. o
@ The cache on the °?
machine used for this 02
test is 2048 KB. %355 200 300

Note: This graph was generated on a previous generation Minor Prophets machines.

CPS343 (Parallel and HPC)

Dense matrix algebra and libraries (and dealin

400
N

500

Spring 2020

13/35

Outline

© Matrix-matrix products

@ Recursive block oriented matrix-matrix multiplication

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 14 /35

Key idea: minimize cache misses

If we partition A and B into appropriate sized blocks

Ao Ao1 } [Boo Bo1]
A — s B =
|: AlO A11 BlO Bll

then the product C = AB can be computed as

C— [Coo Cor] _ [AooBoo + Ao1Bio AooBo1 + Ao1Bi1]
Cio Cin A10Boo + A11B10 A10Bo1 + A11B11

where each of the matrix-matrix products involves matrices of roughly 1/4
the size of the full matrices.

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 15/35

Recursion

We can exploit this idea quite easily with a recursive algorithm.

matrix function C = mult(A, B)
if (size(B) > threshold) then
Coo = mu|t(A00, Boo) + n‘lu|t(A017 BlO)
Co1 = mult(Aoo, Bo1) + mult(Ao1, Bi1)
(
(

()
Cio = mu|t(A10, Boo) 4+ mult(A11, BlO)
G = mu|t(A10, B()l) + mult(A11, Bll)
else
C=AB
endif
return C

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 16 /35

Recursive block-oriented matrix-matrix product

The graph below shows GFLOP/s vs matrix dimension for both a rowwise
product and a recursive block-oriented matrix-matrix product.

Matrix-matrix product for NxN matrix (Minor Prophets)

@ Performance is improved
across the board,
including for smaller
matrix sizes

2.0

GFLOP/S
-
«

@ Performance is relatively
flat - no degradation as

matrix sizes increase. T sequentialilj
— recursive block (bs=4000) ikj

10

0'50 200 400 600 800 1000 1200

N

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 17 /35

Recursive block-oriented matrix-matrix product

This graph shows data for matrix-matrix products but was generated on
our 2016 workstation cluster. Notice the larger matrix dimension (now
N = 2000) and overall higher GFLOP//s rates.

Matrix-matrix ikj product for N xN matrix

@ Probably need to go to a0
N = 3000 or more to
show leveling-off.

@ Note that increasing
block size indefinitely
does not help; the
sequential algorithm

sequential

recursive block (bs=8,333)

essentially used 8N2 as 10 recursive block (bs=100,000)
. recursive block (bs=500,000)
the b|0Ck Slze' 0'50 560 1d00 15b0 2000

N

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 18 /35

Outline

© Dense Matrix Linear Algebra
e BLAS

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 19/35

Basic Linear Algebra Subprograms

The BLAS are routines that provide standard building blocks for
performing basic vector and matrix operations:

@ the Level 1 BLAS perform scalar, vector and vector-vector operations,
@ the Level 2 BLAS perform matrix-vector operations, and

@ the Level 3 BLAS perform matrix-matrix operations.
°

Because the BLAS are efficient, portable, and widely available, they
are commonly used in the development of high quality linear algebra
software.

@ The BLAS homepage is http://www.netlib.org/blas/.

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 20/35

http://www.netlib.org/blas/

BLAS description

@ The name of each BLAS routine (usually) begins with a character
that indicates the type of data it operates on:

S Real single precision.
D Real double precision.
C Complex single precision.
Z Complex double precision.

o Level 1 BLAS handle operations that are O(n) data and O(n) work
o Level 2 BLAS handle operations that are O(n?) data and O(n?) work
o Level 3 BLAS handle operations that are O(n?) data and O(n®) work

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 21/35

Level 1 BLAS

Level 1 BLAS are designed for operations with O(n) data and O(n) work.

Some BLAS 1 subprograms

xCOPY
xSWAP
xSCAL
xAXPY
xDOT
xASUM
xNRM2
IxAMAX

copy one vector to another

swap two vectors

scale a vector by a constant

add a multiple of one vector to another
inner product

1-norm of a vector

2-norm of a vector

find maximal entry in a vector

Notice the exception to the naming convention in the last line. BLAS
functions returning an integer have names starting with I so the datatype
indicator is displaced to the second position.

BLAS 1 quick reference: http://www.netlib.org/blas/blasqr.ps.

CPS343 (Parallel and HPC)

Dense matrix algebra and libraries (and dealin Spring 2020 22/35

http://www.netlib.org/blas/blasqr.ps

Level 2 BLAS

Level 2 BLAS are designed for operations with O(n?) data and O(n?)
work.

Some BLAS 2 subprograms

XGEMV general matrix-vector multiplication
XGER general rank-1 update

xSYR2 symmetric rank-2 update

xTRSV solve a triangular system of equations

A detailed description of BLAS 2 can be found at
http://www.netlib.org/blas/blas2-paper.ps.

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 23/35

http://www.netlib.org/blas/blas2-paper.ps

Level 3 BLAS

Level 3 BLAS are designed for operations with O(n?) data and O(n®)
work.

Some BLAS 3 subprograms

XGEMM general matrix-matrix multiplication
xSYMM symmetric matrix-matrix multiplication
xSYRK symmetric rank-k update

xSYR2K symmetric rank-2k update

A detailed description of BLAS 3 can be found at
http://www.netlib.org/blas/blas3-paper.ps.

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 24 /35

http://www.netlib.org/blas/blas3-paper.ps

BLAS are written in Fortran

@ Calling BLAS routines from Fortran is relatively straightforward

@ Fortran stores two-dimension arrays in column-major order. Many
BLAS routines accept a parameter named LDA which stands for the
leading dimension of A. In Fortran this is the column length.

@ LDA is needed to handle strides between elements common to a single
row of A.

@ In contrast, C and C++ store two-dimensional arrays in row-major
order. Rather than the leading dimension, the trailing dimension
specifies the stride between elements common to a single column.

@ Calling vector-only BLAS routines from C is relatively straightforward.

@ One must work with transposes of matrices in C/C++ programs to
use the BLAS matrix-vector and matrix-matrix routines.

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 25/35

Calling BLAS routine DGEMM() from Fortran

DGEMM() performs the operation
C + aop(A)op(B) + 5C

where op(A) can either be A or AT. The Fortran calling sequence is

DGEMM (TRANSA , TRANSB ,M,N,K,ALPHA ,LDA,B,LDB,BETA,C,LDC)

TRANSA,TRANSB: (CHARACTER#*1) *N’ for no transpose, >T’ or ’Y’ to
transpose

M: (INTEGER) number of rows in C and A

N: (INTEGER) number of columns in C and B

K: (INTEGER) number of columns in A and rows in B
ALPHA, BETA: (DOUBLE PRECISION) scale factors for AB and C
LDA, LDB, LDC: (INTEGER) leading dimensions of A, B, and C

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020

26 /35

CBLAS: The BLAS for C/C++

@ A version of the BLAS has been written with routines that can be
called directly from C/C++.

@ The CBLAS routines have the same name as their Fortran
counterparts except all subprogram and function names are lowercase
and are prepended with cblas_.

@ The CBLAS matrix routines also take an additional parameter to
indicate if the matrix is stored in row-major or column-major order.

@ The leading dimension parameters should correspond to the row
length if matrix is in row-major order and the column length if the
matrix is in column-major order.

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 27/35

Example: Calling CBLAS routine cblas dgemm() fr

The corresponding prototype in CBLAS file would look like

void cblas_dgemm(const enum CBLAS_ORDER Order,
const enum CBLAS_TRANSPOSE TransA,
const enum CBLAS_TRANSPOSE TransB,
const int M, const int N, const int K,
const double alpha, const double *A,
const int 1lda, const double *B, const int 1db,
const double beta, double *C, const int 1ldc);

Changes from the Fortran BLAS:
@ The routine name written in lowercase and prepended with cblas_

@ The new first argument Order should be either cblasColMajor or
CblasRowMajor to indicate how the matrices are stored.

@ TransA and TransB and are typically either CblasNoTrans or CblasTrans.

@ Many values are passed by value, whereas all values are passed by
reference in the Fortran BLAS.

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 28/35

Outline

© Dense Matrix Linear Algebra

o LAPACK

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 29/35

LAPACK

The Linear Algebra PACKage is a successor to both LINPACK and
EISPACK.

LINPACK is a library of Fortran routines for numerical linear algebra
and written in the 1970s.

EISPACK is a library of Fortran routines for numerical computation of
eigenvalues and eigenvectors of matrices and was also written in the
1970s.

One of the LINPACK authors, Cleve Moler, went on to write an
interactive, user-friendly front end to these libraries called MATLAB.
LINPACK and EISPACK primarily make use of the level 1 BLAS

o LAPACK largely replaces LINPACK and EISPACK but takes

advantage of level 2 and level 3 BLAS for more efficient operation on
computers with hierarcharical memory and shared memory
multiprocessors.

The LAPACK homepage is http://www.netlib.org/lapack/.

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 30/35

http://www.netlib.org/lapack/

LAPACK for C/C++

o LAPACK is written in Fortran 90, so calling from C/C++ has the
same challenges as discussed for the BLAS.

@ A version called CLAPACK exists that can be more easily called from
C/C++ but still has the column-major matrix access issue.

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 31/35

Outline

© Dense Matrix Linear Algebra

e ATLAS

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 32/35

ATLAS

ATLAS stands for Automatically Tuned Linear Algebra Software and
consists of the BLAS and some routines from LAPACK.

@ The key to getting high performance from the BLAS (and hence from
LAPACK) is using BLAS routines that are tuned to each particular
machine's architecture and compiler.

@ Vendors of HPC equipment typically supply a BLAS library that has
been optimized for their machines.

@ The ATLAS project was created to provide similar support for HPC
equipment built from commodity hardware (e.g. Beowulf clusters).

The ATLAS homepage is http://math-atlas.sourceforge.net/.

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 33/35

http://math-atlas.sourceforge.net/

ATLAS Performance Example

The graph below shows GFLOP /s vs. matrix dimension for matrix
products using several BLAS implementations. The testing was done on a
Lenovo ThinkStation E32 with 8GB RAM running Ubuntu 14.04.

The Reference BLAS
are supplied with
LAPACK and are not
optimized.

50 BLAS Matrix-matrix product for N x N matrices

40

w
=}

The System ATLAS

— Reference BLAS
— System ATLAS BLAS BLAS are supplied

GFLOP/s

— ATLAS BLAS

with Ubuntu 14.04.

10}] The ATLAS BLAS are
version 3.11.38 and
, ‘ ‘ were compiled on the
0 500 1(?,80 1500 2000 host

8]
=)

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 34 /35

Multithreaded Open BLAS Performance Example

The graph below shows GFLOP /s vs. matrix dimension for matrix products
using several BLAS implementations. The testing was done on a Lenovo
ThinkStation E32 with 4 cores and 8GB RAM running Ubuntu 14.04.

BLAS Matrix-matrix product for N x N matrices

140}

120+

100}

Reference BLAS
— System ATLAS BLAS

— ATLAS BLAS 1
Open BLAS

80 -

GFLOP/s

60 -

a0f

20+

Py VT

0 500 1000 1500 2000
N

CPS343 (Parallel and HPC) Dense matrix algebra and libraries (and dealin Spring 2020 35/35

	HPC == numerical linear algebra?
	The role of linear algebra in HPC
	Numerical linear algebra

	Matrix-matrix products
	Rowwise matrix-matrix multiplication
	Recursive block oriented matrix-matrix multiplication

	Dense Matrix Linear Algebra
	BLAS
	LAPACK
	ATLAS

