
I/O Libraries and HDF5

CPS343

Parallel and High Performance Computing

Spring 2020

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 1 / 41

Outline

1 Introduction: I/O libraries
Why we need I/O libraries
The Hierarchical Data Format
Other file formats

2 HDF concepts and basic usage
HDF data model, file structure, and library API
HDF programming model
HDF tools
Use examples

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 2 / 41

Outline

1 Introduction: I/O libraries
Why we need I/O libraries
The Hierarchical Data Format
Other file formats

2 HDF concepts and basic usage
HDF data model, file structure, and library API
HDF programming model
HDF tools
Use examples

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 3 / 41

I/O challenges

I/O presents two important challenges to scientific computing:

1 Performance — I/O is much more time-consuming than computation.

2 Portability — different kinds of computers can have different ways of
representing real (floating point) numbers.

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 4 / 41

Storage formats

When you use a PRINT statement in Fortran or a printf() in C or output
to cout in C++, you are asking the program to output data in
human-readable form:

#include <math.h>

float x = M_PI;

printf("%f\n", x);

But what if the value that you want to output is a real number with lots
of significant digits?

3.14159265358979323846264338327950288419716939937510...

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 5 / 41

Data output as text

When you output data as text, each character takes 1 byte. So if you
output a number with lots of digits, then you’re outputting lots of bytes.

For example, it takes 13 bytes to output

1.3456789E+23

as text.

This assumes we’re using ASCII (American Standard Code for Information
Interchange); the requirements can be higher for multilingual character
sets.

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 6 / 41

Output data in binary

Inside the computer, a single precision real number (Fortran REAL,
C/C++ float) typically requires 4 bytes, and a double precision number
(DOUBLE PRECISION or double) typically requires 8.

That’s less than 13.

Since I/O is expensive, it’s better to output 4 or 8 bytes than 13 or more.

Happily programming languages allow one to output data as binary
(internal representation) rather than as text.

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 7 / 41

Binary output problems

When you output data as binary rather than as text, you output
substantially fewer bytes, so you save time (since I/O is expensive) and
you save disk space.

But, you pay two prices:

Readability (Most) People can’t read binary easily.

Portability Different kinds of computers have different ways of internally
representing numbers.

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 8 / 41

Binary readability: no problem

Readability of binary data isn’t a problem in scientific computing,
because:

You can always write a helper program to read in the binary data and
display its text equivalent.

If you have lots and lots of data then there is probably too much to
read anyway, at least not without a program that read the data file
and display small subsets of data.

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 9 / 41

Binary portability: big problem

Binary data portability is a very big problem in scientific computing,
because data that’s output on one kind of computer may not be readable
on another, and so:

You can’t necessarily output the data on one kind of computer and
then use them (for example, visualize, analyze) on another kind.

Some day the kind of computer that output the data will be obsolete
and there may be no computer in the world that can input it, and
thus the data are lost. (Okay, that’s a bit extreme, but at the very
least it may not be convenient to read the data)

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 10 / 41

Portable binary data

To address this problem, the HPC community has developed a number of
portable binary data formats.

Two of the most popular are:

HDF (Hierarchical Data Format) from the National Center for
Supercomputing Applications: http://www.hdfgroup.org

NetCDF (Network Common Data Form) from Unidata:
http://www.unidata.ucar.edu/software/netcdf

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 11 / 41

http://www.hdfgroup.org
http://www.unidata.ucar.edu/software/netcdf

Advantages of portable I/O libraries

There are many obvious advantages to using a portable binary I/O
package. For example, they:

give you portable binary I/O;

have simple, clear APIs;

are available for free;

run on most platforms;

allow you to annotate your data (for example, put into the file the
variable names, units, experiment name, grid description, etc).

Also, both HDF and netCDF support distributed parallel I/O.

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 12 / 41

Outline

1 Introduction: I/O libraries
Why we need I/O libraries
The Hierarchical Data Format
Other file formats

2 HDF concepts and basic usage
HDF data model, file structure, and library API
HDF programming model
HDF tools
Use examples

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 13 / 41

What is HDF?

According to the HDF website (http://www.hdfgroup.org) HDF5
provides:

A versatile data model that can represent very complex data objects
and a wide variety of metadata.

A completely portable file format with no limit on the number or size
of data objects in the collection.

A software library that runs on a range of computational platforms,
from laptops to massively parallel systems, and implements a
high-level APIs for C, C++, Fortran 90, Java, and Python, and many
other languages

A rich set of integrated performance features that allow for access
time and storage space optimizations.

Tools and applications for managing, manipulating, viewing, and
analyzing the data in the collection.

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 14 / 41

http://www.hdfgroup.org

Outline

1 Introduction: I/O libraries
Why we need I/O libraries
The Hierarchical Data Format
Other file formats

2 HDF concepts and basic usage
HDF data model, file structure, and library API
HDF programming model
HDF tools
Use examples

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 15 / 41

netCDF

Another I/O library that is widely used by the HPC community is netCDF
(Network Common Data Form).

netCDF provides many of the same capabilities as HDF5. It is widely used
in atmospheric and meteorological applications.

Comparing netCDF and HDF:

the netCDF API is a bit simpler than that of HDF5

the native netCDF-3 filespace is flat rather than hierarchical

netCDF-4 (current version) uses HDF5 as the underlying file format
but also works with netCDF-3 files

parallel I/O is supported through the underlying HDF5 layer or with a
spin-off library Parallel netCDF (or PnetCDF) from Argonne
National labs which implements netCDF functionality on top of
MPI-IO

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 16 / 41

FITS

Although not directly related to HPC, it’s interesting (but unsuprising) to
note that standardized binary file formats have been around for some time.

FITS stands for Flexible Image Transport System and is mostly used in
astronomical and other image processing applications for storing and
especially for archiving data.

First standardized in 1981, it has been updated since then but ensures that
backwards compatibility will always be maintained.

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 17 / 41

Data management plans

Finally, it’s worth pointing out that in in this age of “big data,”
government funding organizations like NSF and NIH require all grantees to
develop and implement a data management plan.

For example, the National Science Foundation (NSF) requires that

Grantees from all fields will develop and submit specific plans
to share materials collected with NSF support, except where
this is inappropriate or impossible. These plans should cover
how and where these materials will be stored at reasonable cost,
and how access will be provided to other researchers, generally at
their cost.

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 18 / 41

Outline

1 Introduction: I/O libraries
Why we need I/O libraries
The Hierarchical Data Format
Other file formats

2 HDF concepts and basic usage
HDF data model, file structure, and library API
HDF programming model
HDF tools
Use examples

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 19 / 41

HDF organization

The Hierarchical Data Format (HDF) implements a model for managing
and storing data. It includes

1 an abstract data model,

2 an abstract storage model (the data format),

3 and libraries to implement the abstract model and to map the storage
model to different storage mechanisms.

The HDF5 library

provides a programming interface to a concrete implementation of the
abstract models,

implements a model of data transfer, i.e., efficient movement of data
from one stored representation to another stored representation.

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 20 / 41

HDF abstract data model

File a contiguous string of bytes in a computer store (memory,
disk, etc.), and the bytes represent zero or more objects of
the model

Group a collection of objects (including groups)

Dataset a multidimensional array of data elements with attributes
and other metadata

Dataspace a description of the dimensions of a multidimensional array

Datatype a description of a specific class of data element including its
storage layout as a pattern of bits

Attribute a named data value associated with a group, dataset, or
named datatype

Property List a collection of parameters (some permanent and some
transient) controlling options in the library

Link the way objects are connected

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 21 / 41

HDF abstract storage model

HDF5 objects and data are mapped to a linear address space, assumed to
be a contiguous array of bytes stored on some random access medium.

The HDF5 File Format Specification is organized in three parts:

Level 0 File signature and super block

Level 1 File infrastructure:
B-link trees and B-tree nodes, Group, Group entry, Local
heaps, Global heap, Free-space index

Level 2 Data object:
Data object headers, Shared data object headers, Data
object data storage

Key abstraction goal: efficiently map logically multidimensional
rectangular arrays to efficient storage mechanisms

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 22 / 41

HDF file structure

As its name implies, files in HDF
have a hierarchical structure, much
like the Unix file system structure.

Every file has a root group
named “/”.

A group typically maintains
pointers to other groups or to
datasets.

The path to dset2 in the lower
right of the diagram is
/group2/group2/dset2

Image source: https://portal.hdfgroup.org/display/HDF5/HDF5+User%27s+Guide

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 23 / 41

https://portal.hdfgroup.org/display/HDF5/HDF5+User%27s+Guide

HDF5 API naming scheme

Prefix Operates on

H5A Attributes
H5D Datasets
H5E Error reports
H5F Files
H5G Groups
H5I Identifiers
H5L Links
H5O Objects
H5P Property lists
H5R References
H5S Dataspaces
H5T Datatypes
H5Z Filters

Since the HDF language is implemented
in C it does not provide object-oriented a
namespace.

The naming convention, however, groups
routines based on the type of data or
structures they operate on.

For example, the function H5Dcreate()

is used to create a new dataset, while
H5Gcreate() can create a new group.

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 24 / 41

Outline

1 Introduction: I/O libraries
Why we need I/O libraries
The Hierarchical Data Format
Other file formats

2 HDF concepts and basic usage
HDF data model, file structure, and library API
HDF programming model
HDF tools
Use examples

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 25 / 41

Creating an HDF file

The following code segment creates and then closes an HDF file. Here it is
assumed that fname is a C character array containing a valid file name.

hid_t file; /* declare file identifier */

/*

* Create a new file (truncate and overwrite any file of

* the same name) with default file creation properties

* and default file access properties

*/

file = H5Fcreate(fname , H5F_ACC_TRUNC , H5P_DEFAULT ,

H5P_DEFAULT);

/*

* Close the file

*/

status = H5Fclose(file);

The parameter H5F_ACC_EXCL can be used instead of H5F_ACC_TRUNC to cause
H5Fcreate() to fail if the file already exists.

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 26 / 41

Creating and initializing a dataset

The essential objects within a dataset are datatype and dataspace.

These are independent objects and are created separately from any dataset
to which they may be attached. Hence, creating a dataset requires, at a
minimum, the following steps:

1 Create and initialize a dataspace for the dataset

2 Define a datatype for the dataset if not using a predefined datatype

3 Create and initialize the dataset

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 27 / 41

Creating and initializing a dataset: 2D Array

hid_t dataset , datatype , dataspace; /* identifiers */

/* Create dataspace for a fixed -size 2-D dataset. */

dimsf [0] = NX;

dimsf [1] = NY;

dataspace = H5Screate_simple (2, dimsf , NULL);

/* Define a datatype for the data in the dataset */

datatype = H5Tcopy(H5T_NATIVE_INT);

status = H5Tset_order(datatype , H5T_ORDER_LE);

/* Create a new dataset with default dataset

* creation properties */

dataset = H5Dcreate(file , DATASETNAME , datatype , dataspace ,

H5P_DEFAULT , H5P_DEFAULT , H5P_DEFAULT);

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 28 / 41

Examples of predefined HDF datatypes

HDF provides several predefined datatypes. For example

Datatype Description

H5T STD I32LE Four-byte, little-endian, signed, two’s complement int
H5T STD U16BE Two-byte, big-endian, unsigned integer
H5T IEEE F32BE Four-byte, big-endian, IEEE floating point
H5T IEEE F64LE Eight-byte, little-endian, IEEE floating point
H5T C S1 One-byte, null-terminated string of eight-bit characters

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 29 / 41

Examples of predefined native HDF datatypes

HDF also supports native datatypes that correspond to datatypes available
on the local platform.

Native Datatype Corresponding C Type

H5T NATIVE INT int
H5T NATIVE FLOAT float
H5T NATIVE CHAR char
H5T NATIVE DOUBLE double
H5T NATIVE LDOUBLE long double

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 30 / 41

Closing objects

When closing an HDF file, one should also close the associated dataset,
datatype (if one was created) and dataspace.

This releases resources allocated for these objects.

H5Tclose(datatype);

H5Dclose(dataset);

H5Sclose(dataspace);

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 31 / 41

Outline

1 Introduction: I/O libraries
Why we need I/O libraries
The Hierarchical Data Format
Other file formats

2 HDF concepts and basic usage
HDF data model, file structure, and library API
HDF programming model
HDF tools
Use examples

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 32 / 41

Some HDF command-line tools

h5cc, h5c++ Compiler front-ends.

h5debug Debugs an existing HDF5 file at a low level.

h5diff Compares two HDF5 files and reports the differences.

h5dump Enables the user to examine the contents of an HDF5 file
and dump those contents to an ASCII file.

h5import Imports ASCII or binary data into HDF5.

h5jam/h5unjam Add/Remove text to/from User Block at the beginning
of an HDF5 file.

h5ls Lists selected information about file objects in the specified
format.

h5perf Measures Parallel HDF5 performance.

h5repack Copies an HDF5 file to a new file with or without
compression/chunking.

h5repart Repartitions a file or family of files.

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 33 / 41

HDFView

HDFView is an interactive program written in Java for viewing HDF files.

Image source: http://www.hdfgroup.org/hdf-java-html/hdfview/

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 34 / 41

http://www.hdfgroup.org/hdf-java-html/hdfview/

Outline

1 Introduction: I/O libraries
Why we need I/O libraries
The Hierarchical Data Format
Other file formats

2 HDF concepts and basic usage
HDF data model, file structure, and library API
HDF programming model
HDF tools
Use examples

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 35 / 41

Example: Storing a matrix (1)

/* Declare necessary variables */

const char* fname = "matrix.h5";

hid_t file_id , dataset_id , dataspace_id;

hsize_t dims [2];

int rows , cols , stride;

double* A;

/*

* ...

* Assign rows and cols and

* create and fill matrix A here

* ...

*/

/* Create HDF5 file. Truncate if file already exists */

file_id = H5Fcreate(fname , H5F_ACC_TRUNC ,

H5P_DEFAULT , H5P_DEFAULT);

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 36 / 41

Example: Storing a matrix (2)

/* Create the data space for dataset */

dims [0] = rows;

dims [1] = cols;

dataspace_id = H5Screate_simple (2, dims , NULL);

/* Create the dataset */

dataset_id = H5Dcreate(file_id , "/Matrix", H5T_IEEE_F64LE ,

dataspace_id , H5P_DEFAULT ,

H5P_DEFAULT , H5P_DEFAULT);

/* Write matrix data to file */

status = H5Dwrite(dataset_id , H5T_NATIVE_DOUBLE ,

H5S_ALL , H5S_ALL , H5P_DEFAULT , A);

/* release resources and close file */

status = H5Dclose(dataset_id);

status = H5Sclose(dataspace_id);

status = H5Fclose(file_id);

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 37 / 41

Example: Reading a matrix (1)

/* Declare necessary variables */

const char* fname = "matrix.h5";

hid_t file_id , dataset_id , dataspace_id , file_dataspace_id;

hsize_t* dims;

hssize_t num_elem;

int rank;

int ndims;

int rows , cols , stride;

double* A;

/* Open existing HDF5 file */

file_id = H5Fopen(fname , H5F_ACC_RDONLY , H5P_DEFAULT);

/* Open existing dataset */

dataset_id = H5Dopen(file_id , "/Matrix", H5P_DEFAULT);

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 38 / 41

Example: Reading a matrix (2)

/* Determine dataset parameters */

file_dataspace_id = H5Dget_space(dataset_id);

rank = H5Sget_simple_extent_ndims(file_dataspace_id);

dims = (hsize_t *) malloc(rank * sizeof(hsize_t));

ndims = H5Sget_simple_extent_dims(file_dataspace_id , dims ,

NULL);

if (ndims != rank)

{

fprintf(stderr , "Expected dataspace to be dimension ");

fprintf(stderr , "%d but appears to be %d\n", rank , ndims);

}

/* Allocate matrix */

num_elem = H5Sget_simple_extent_npoints(file_dataspace_id);

A = (double *) malloc(num_elem * sizeof(double));

rows = dims [0];

cols = dims [1];

stride = cols;

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 39 / 41

Example: Reading a matrix (3)

/* Create dataspace */

dataspace_id = H5Screate_simple(rank , dims , NULL);

free(dims);

/* Read matrix data from file */

status = H5Dread(dataset_id , H5T_NATIVE_DOUBLE , dataspace_id ,

file_dataspace_id , H5P_DEFAULT , A);

/* Release resources and close file */

status = H5Dclose(dataset_id);

status = H5Sclose(dataspace_id);

status = H5Sclose(file_dataspace_id);

status = H5Fclose(file_id);

/*

* Do something with matrix

*/

free(A);

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 40 / 41

Acknowledgements

Material used in creating these slides comes from

The HDF5 User’s Guide https:

//portal.hdfgroup.org/display/HDF5/HDF5+User%27s+Guide

Various slide presentations:

http://www.oscer.ou.edu/ncsiworkshop2012intropar_sipe_

scilibs_20120803.pdf

http://www.spscicomp.org/ScicomP12/Presentations/User/

Yang.pdf

http://www.unidata.ucar.edu/software/netcdf/workshops/

2007/hdf5/ncw07-hdf5.pdf

CPS343 (Parallel and HPC) I/O Libraries and HDF5 Spring 2020 41 / 41

https://portal.hdfgroup.org/display/HDF5/HDF5+User%27s+Guide
https://portal.hdfgroup.org/display/HDF5/HDF5+User%27s+Guide
http://www.oscer.ou.edu/ncsiworkshop2012intropar_sipe_scilibs_20120803.pdf
http://www.oscer.ou.edu/ncsiworkshop2012intropar_sipe_scilibs_20120803.pdf
http://www.spscicomp.org/ScicomP12/Presentations/User/Yang.pdf
http://www.spscicomp.org/ScicomP12/Presentations/User/Yang.pdf
http://www.unidata.ucar.edu/software/netcdf/workshops/2007/hdf5/ncw07-hdf5.pdf
http://www.unidata.ucar.edu/software/netcdf/workshops/2007/hdf5/ncw07-hdf5.pdf

	Introduction: I/O libraries
	Why we need I/O libraries
	The Hierarchical Data Format
	Other file formats

	HDF concepts and basic usage
	HDF data model, file structure, and library API
	HDF programming model
	HDF tools
	Use examples

