
Introduction

CPS343

Parallel and High Performance Computing

Spring 2020

CPS343 (Parallel and HPC) Introduction Spring 2020 1 / 30



Outline

1 Preface
Course Details
Course Requirements

2 Background
Definitions and Nomenclature
Moore’s Law

CPS343 (Parallel and HPC) Introduction Spring 2020 2 / 30



Outline

1 Preface
Course Details
Course Requirements

2 Background
Definitions and Nomenclature
Moore’s Law

CPS343 (Parallel and HPC) Introduction Spring 2020 3 / 30



Course Details

Meeting Time and Place: 2:10–3:10 p.m. Monday, Wednesday, and
Friday

Roughly two days per week we will meet in KOSC 125
Approximately one day per week we will meet in KOSC 244

Course Website:
http://www.math-cs.gordon.edu/courses/cps343

Office Hours:

Monday and Wednesday: 3:20–4:20 p.m.,
Tuesday and Thursday: 1:00–3:00 p.m.,
and by appointment.

Prerequisites: Ability to program in C/C++ and Python. Knowledge
of computer organization, parallel programming constructs such as
Java threads, and experience with linear algebra/matrices will all be
helpful.

CPS343 (Parallel and HPC) Introduction Spring 2020 4 / 30

http://www.math-cs.gordon.edu/courses/cps343


Textbooks

Our main textbook is Multicore and GPU Programming: An
Integrated Approach by Gerassimos Barlas, Morgan Kaufman/Elsevier,
2015.

The following recommended additional texts are available free on-line:

1 Introduction to High-Performance Scientific Computing by
Victor Eijkhout, 2016.

2 Parallel Computing for Science and Engineering by Victor
Eijkhout, 2017.

3 Designing and Building Parallel Programs by Ian Foster, 1995.

4 MPI: The Complete Reference by Marc Snir, et.al., 1996.

Links for these can be found on the course web site.

CPS343 (Parallel and HPC) Introduction Spring 2020 5 / 30



Course Content

This course will cover the following topic areas:

Overview and history of parallel and high performance computing

Parallel and high performance computing (HPC) architectures

Tools for parallel programming (OpenMP, MPI, CUDA, OpenACC,
etc.)

High performance issues (memory hierarchy, caching, bandwidth, etc.)

Parallel computation issues (partition, synchronization, load
balancing, etc.)

Survey of parallel application problems

CPS343 (Parallel and HPC) Introduction Spring 2020 6 / 30



Course Objectives

After completing this course you should be able to:

analyze a programming task and identify what portions admit a
parallel implementation

Use various numerical libraries and work with common formats for
large data files

use OpenMP to develop applications for multi-core computers

use the MPI standard to develop applications for clusters

use CUDA, OpenACC and/or Thrust to develop applications for GPU
hardware

understand and address issues arising in installation and management
of HPC systems

CPS343 (Parallel and HPC) Introduction Spring 2020 7 / 30



Outline

1 Preface
Course Details
Course Requirements

2 Background
Definitions and Nomenclature
Moore’s Law

CPS343 (Parallel and HPC) Introduction Spring 2020 8 / 30



Mobile Device Policy

Laptops, tablets, and other mobile devices may be used only when
appropriate for the current classroom activity.

You may not use a mobile phone or other device for texting or
otherwise communicating with others during class. (This activity
prevents you from fully concentrating on our topic and is distracting
to those around you and to the professor.)

CPS343 (Parallel and HPC) Introduction Spring 2020 9 / 30



Attendance and Participation

Regular, consistent attendance is expected

Assigned readings must be completed before class so you are able to
discuss the covered material

You are expected to be engaged in all class discussions and activities

Class will be a mixture of presentation and discussion: you are
encouraged to ask questions as the arise!

CPS343 (Parallel and HPC) Introduction Spring 2020 10 / 30



Homework Assignments

Homework problems will be assigned throughout the semester.

some will be pencil (or pen) and paper problems

some will involved programming

some may involve writing short reports

You are permitted to discuss problems with one another but all written
work or code you turn in should reflect your own understanding.

CPS343 (Parallel and HPC) Introduction Spring 2020 11 / 30



Projects

1 I anticipate assigning four programming projects:

performance measuring and tuning and working with large data files
using OpenMP
using MPI
using CUDA

2 There will also be a final project at end of the semester.

Topics will be chosen in consultation with me
Each student will make a presentation to the class on their work at the
end of the semester
Collaboration on a single project is not allowed. . .
. . . but two students may choose related or complementary projects and
share information
You are encouraged to talk about your projects with each other and
help each other as necessary

CPS343 (Parallel and HPC) Introduction Spring 2020 12 / 30



Quizzes and Exams

Quizzes

approximately seven quizzes during the semester

may be announced or unannounced

short — 10 minutes or less

cover assigned reading, class presentation, homework, hands-on
exercises, or projects

Exams

two hour-long exams

each exam will cover about half of the material

CPS343 (Parallel and HPC) Introduction Spring 2020 13 / 30



Grading weights

Component Percentage
Class preparedness and participation 10%

Written assignments 15%
Quizzes 10%

Programming projects 30%
Final project and presentation 15%

Midterm exam 10%
Final exam 10%

CPS343 (Parallel and HPC) Introduction Spring 2020 14 / 30



Outline

1 Preface
Course Details
Course Requirements

2 Background
Definitions and Nomenclature
Moore’s Law

CPS343 (Parallel and HPC) Introduction Spring 2020 15 / 30



Definitions

Parallel Computing

By parallel computing we mean
any computing that consists of
multiple tasks being executed
simultaneously as part of a single
job.

This is different than
multiprocessing, which refers to a
computer having multiple
on-going jobs at any one time.

High Performance Computing

Synonymous with supercomputing, HPC
is focused on running jobs that

take a long time to run but must be
run as fast as possible (different
than real-time programming where
speed is also very important but at
a different scale), and/or

use more data than can be handled
by “normal” computers.

Thus, HPC is an umbrella which covers parallel computing in the cases
where the goal of the parallel program is to tackle large jobs as quickly as
possible.

CPS343 (Parallel and HPC) Introduction Spring 2020 16 / 30



Definitions

Parallel Computing

By parallel computing we mean
any computing that consists of
multiple tasks being executed
simultaneously as part of a single
job.

This is different than
multiprocessing, which refers to a
computer having multiple
on-going jobs at any one time.

High Performance Computing

Synonymous with supercomputing, HPC
is focused on running jobs that

take a long time to run but must be
run as fast as possible (different
than real-time programming where
speed is also very important but at
a different scale), and/or

use more data than can be handled
by “normal” computers.

Thus, HPC is an umbrella which covers parallel computing in the cases
where the goal of the parallel program is to tackle large jobs as quickly as
possible.

CPS343 (Parallel and HPC) Introduction Spring 2020 16 / 30



Definitions

Parallel Computing

By parallel computing we mean
any computing that consists of
multiple tasks being executed
simultaneously as part of a single
job.

This is different than
multiprocessing, which refers to a
computer having multiple
on-going jobs at any one time.

High Performance Computing

Synonymous with supercomputing, HPC
is focused on running jobs that

take a long time to run but must be
run as fast as possible (different
than real-time programming where
speed is also very important but at
a different scale), and/or

use more data than can be handled
by “normal” computers.

Thus, HPC is an umbrella which covers parallel computing in the cases
where the goal of the parallel program is to tackle large jobs as quickly as
possible.

CPS343 (Parallel and HPC) Introduction Spring 2020 16 / 30



Definitions

Parallel Computing

the use of two or more processors
(computers), usually in the same
system, working simultaneously to
solve a single problem.

Distributed Computing

any computing that involves multiple
computers remote from each other
that each have a role in a
computation problem or information
processing.

Characteristic Parallel Distributed

Overall goal speed convenience

Interactions frequent infrequent

Granularity fine course

Reliability assumed not assumed

CPS343 (Parallel and HPC) Introduction Spring 2020 17 / 30



Definitions

Parallel Computing

the use of two or more processors
(computers), usually in the same
system, working simultaneously to
solve a single problem.

Distributed Computing

any computing that involves multiple
computers remote from each other
that each have a role in a
computation problem or information
processing.

Characteristic Parallel Distributed

Overall goal speed convenience

Interactions frequent infrequent

Granularity fine course

Reliability assumed not assumed

CPS343 (Parallel and HPC) Introduction Spring 2020 17 / 30



Definitions

Parallel Computing

the use of two or more processors
(computers), usually in the same
system, working simultaneously to
solve a single problem.

Distributed Computing

any computing that involves multiple
computers remote from each other
that each have a role in a
computation problem or information
processing.

Characteristic Parallel Distributed

Overall goal speed convenience

Interactions frequent infrequent

Granularity fine course

Reliability assumed not assumed

CPS343 (Parallel and HPC) Introduction Spring 2020 17 / 30



Why study parallel computing?

Question: Why study parallel computing?

Answer:

Because virtually all computers are now parallel!

single-core computers stopped getting faster around 2005.

multi-core processors have become ubiquitous—from computers, to
tablets and phones

effective parallel algorithms are often different than effective serial
algorithms

parallel algorithms are necessary to take advantage of computer
hardware now and (at least) in the near future

CPS343 (Parallel and HPC) Introduction Spring 2020 18 / 30



Why study parallel computing?

Question: Why study parallel computing?

Answer: Because virtually all computers are now parallel!

single-core computers stopped getting faster around 2005.

multi-core processors have become ubiquitous—from computers, to
tablets and phones

effective parallel algorithms are often different than effective serial
algorithms

parallel algorithms are necessary to take advantage of computer
hardware now and (at least) in the near future

CPS343 (Parallel and HPC) Introduction Spring 2020 18 / 30



Why study parallel computing?

Question: Why study parallel computing?

Answer: Because virtually all computers are now parallel!

single-core computers stopped getting faster around 2005.

multi-core processors have become ubiquitous—from computers, to
tablets and phones

effective parallel algorithms are often different than effective serial
algorithms

parallel algorithms are necessary to take advantage of computer
hardware now and (at least) in the near future

CPS343 (Parallel and HPC) Introduction Spring 2020 18 / 30



Why study parallel computing?

Question: Why study parallel computing?

Answer: Because virtually all computers are now parallel!

single-core computers stopped getting faster around 2005.

multi-core processors have become ubiquitous—from computers, to
tablets and phones

effective parallel algorithms are often different than effective serial
algorithms

parallel algorithms are necessary to take advantage of computer
hardware now and (at least) in the near future

CPS343 (Parallel and HPC) Introduction Spring 2020 18 / 30



Why study parallel computing?

Question: Why study parallel computing?

Answer: Because virtually all computers are now parallel!

single-core computers stopped getting faster around 2005.

multi-core processors have become ubiquitous—from computers, to
tablets and phones

effective parallel algorithms are often different than effective serial
algorithms

parallel algorithms are necessary to take advantage of computer
hardware now and (at least) in the near future

CPS343 (Parallel and HPC) Introduction Spring 2020 18 / 30



Why study parallel computing?

Question: Why study parallel computing?

Answer: Because virtually all computers are now parallel!

single-core computers stopped getting faster around 2005.

multi-core processors have become ubiquitous—from computers, to
tablets and phones

effective parallel algorithms are often different than effective serial
algorithms

parallel algorithms are necessary to take advantage of computer
hardware now and (at least) in the near future

CPS343 (Parallel and HPC) Introduction Spring 2020 18 / 30



Why study high performance computing?

Question: Why study high performance computing?

Answer:

Because performance is always important!

Supercomputers occupy an important niche; not a lot of consumer
appeal but indispensable in the modern world

getting the best performance out of a program is important for all
levels of coding; from embedded controllers to mobile devices to
supercomputers

CPS343 (Parallel and HPC) Introduction Spring 2020 19 / 30



Why study high performance computing?

Question: Why study high performance computing?

Answer: Because performance is always important!

Supercomputers occupy an important niche; not a lot of consumer
appeal but indispensable in the modern world

getting the best performance out of a program is important for all
levels of coding; from embedded controllers to mobile devices to
supercomputers

CPS343 (Parallel and HPC) Introduction Spring 2020 19 / 30



Why study high performance computing?

Question: Why study high performance computing?

Answer: Because performance is always important!

Supercomputers occupy an important niche; not a lot of consumer
appeal but indispensable in the modern world

getting the best performance out of a program is important for all
levels of coding; from embedded controllers to mobile devices to
supercomputers

CPS343 (Parallel and HPC) Introduction Spring 2020 19 / 30



Why study high performance computing?

Question: Why study high performance computing?

Answer: Because performance is always important!

Supercomputers occupy an important niche; not a lot of consumer
appeal but indispensable in the modern world

getting the best performance out of a program is important for all
levels of coding; from embedded controllers to mobile devices to
supercomputers

CPS343 (Parallel and HPC) Introduction Spring 2020 19 / 30



Scientific Computing

Much of this class will be focused on problems that are categorized as
scientific computing or numerical computing problems.

Such problems include:

Simulation (weather forecasting, galaxy formation, fluid flow)

Data mining (gene sequencing, signal processing)

Machine Learning

Visualization to present data as pictures to provide understanding and
insight

While HPC is often associated with scientific and numerical computing, it
has applications in many other areas as well — consider Google’s ability to
quickly resolve search queries.

CPS343 (Parallel and HPC) Introduction Spring 2020 20 / 30



FLOPS

A FLOP is a Floating Point OPeration.

The term FLOPS means Floating Point Operation Per Second. Also
written as FLOP/S. Note that FLOPs is the plural of FLOP.

MFLOPS means 1 million FLOPS

Sometimes this means 10002 and sometimes it means 10242.

Todays laptop computers are capable of computations in the GFLOPS
(gigaflops) range; 1 GFLOP = 1000 MFLOP.

Most current supercomputers work in the TFLOPS (teraflops) or
PFLOPS (petaflops) range

1 TFLOP = 1000 GFLOP
1 PFLOP = 1000 TFLOP.

CPS343 (Parallel and HPC) Introduction Spring 2020 21 / 30



Exascale Challenge

Prior to 2016 the goal was to have computers working in the EFLOPS
(exaflops) range by 2018. This is usually referred to as “exascale”
computing to emphasize the fact that it’s not just computation rate but
also data set size that will be HUGE!

How did we do? We didn’t make it.

In November 2017 the fastest computer in the world (according to the
most commonly used benchmark) achieved 93 PFLOPs, It required over
15,370 kW of electricity every hour. Using the current residential rate for
electricity in Massachusetts, it cost over $1,840 per hour to run.

Two years later, in November 2019, the fastest computer achieved 148.6
PFLOPs. However, it only requires 10,000 kW of electricity per hour, or
about $1,000 per hour.

CPS343 (Parallel and HPC) Introduction Spring 2020 22 / 30



Exascale Challenge

Prior to 2016 the goal was to have computers working in the EFLOPS
(exaflops) range by 2018. This is usually referred to as “exascale”
computing to emphasize the fact that it’s not just computation rate but
also data set size that will be HUGE!

How did we do?

We didn’t make it.

In November 2017 the fastest computer in the world (according to the
most commonly used benchmark) achieved 93 PFLOPs, It required over
15,370 kW of electricity every hour. Using the current residential rate for
electricity in Massachusetts, it cost over $1,840 per hour to run.

Two years later, in November 2019, the fastest computer achieved 148.6
PFLOPs. However, it only requires 10,000 kW of electricity per hour, or
about $1,000 per hour.

CPS343 (Parallel and HPC) Introduction Spring 2020 22 / 30



Exascale Challenge

Prior to 2016 the goal was to have computers working in the EFLOPS
(exaflops) range by 2018. This is usually referred to as “exascale”
computing to emphasize the fact that it’s not just computation rate but
also data set size that will be HUGE!

How did we do? We didn’t make it.

In November 2017 the fastest computer in the world (according to the
most commonly used benchmark) achieved 93 PFLOPs, It required over
15,370 kW of electricity every hour. Using the current residential rate for
electricity in Massachusetts, it cost over $1,840 per hour to run.

Two years later, in November 2019, the fastest computer achieved 148.6
PFLOPs. However, it only requires 10,000 kW of electricity per hour, or
about $1,000 per hour.

CPS343 (Parallel and HPC) Introduction Spring 2020 22 / 30



Exascale Challenge

Prior to 2016 the goal was to have computers working in the EFLOPS
(exaflops) range by 2018. This is usually referred to as “exascale”
computing to emphasize the fact that it’s not just computation rate but
also data set size that will be HUGE!

How did we do? We didn’t make it.

In November 2017 the fastest computer in the world (according to the
most commonly used benchmark) achieved 93 PFLOPs, It required over
15,370 kW of electricity every hour. Using the current residential rate for
electricity in Massachusetts, it cost over $1,840 per hour to run.

Two years later, in November 2019, the fastest computer achieved 148.6
PFLOPs. However, it only requires 10,000 kW of electricity per hour, or
about $1,000 per hour.

CPS343 (Parallel and HPC) Introduction Spring 2020 22 / 30



Exascale Challenge

To develop a practical exascale computer we need to overcome multiple
challenges:

Processor architecture is still unknown.

System power is the primary constraint for the exascale system:
simply scaling up from today’s requirements for a petaflop computer,
the exaflop computer in 2020 would require 200 MW, which is
untenable. The target is 20–40 MW in 2020 for 1 exaflop.

Memory bandwidth and capacity are not keeping pace with the
increase in flops: technology trends against a constant or increasing
memory per core. Although the memory per flop may be acceptable
to applications, memory per processor will fall dramatically, thus
rendering some of the current scaling approaches useless

Clock frequencies are expected to decrease to conserve power; as a
result, the number of processing units on a single chip will have to
increase – this means the exascale architecture will likely be
high-concurrency – billion-way concurrency is expected.

CPS343 (Parallel and HPC) Introduction Spring 2020 23 / 30



Exascale Challenge

Cost of data movement, both in energy consumed and in
performance, is not expected to improve as much as that of floating
point operations, thus algorithms need to minimize data movement,
not flops

A new programming model will be necessary: even heroic compilers
will not be able to hide the level of concurrency from applications

The I/O system at all levels – chip to memory, memory to I/O node,
I/O node to disk – will be much harder to manage, as I/O bandwidth
is unlikely to keep pace with machine speed

Reliability and resiliency will be critical at the scale of billion-way
concurrency: “silent errors,” caused by the failure of components and
manufacturing variability, will more drastically affect the results of
computations on exascale computers than today’s petascale
computers

CPS343 (Parallel and HPC) Introduction Spring 2020 24 / 30



Outline

1 Preface
Course Details
Course Requirements

2 Background
Definitions and Nomenclature
Moore’s Law

CPS343 (Parallel and HPC) Introduction Spring 2020 25 / 30



Moore’s Law

What we now call Moore’s Law was described by Gordon Moore in 1965
as the tendency for the number of transistors in an integrated circuit to
double approximately every two years.

sometimes quoted as eighteen months rather than two years

transistor density has been (and still can) continue to increase

clock speeds have leveled off

CPS343 (Parallel and HPC) Introduction Spring 2020 26 / 30



Moore’s Law

https://www.weforum.org/agenda/2018/09/end-of-an-era-what-computing-will-look-like-after-moores-law/

CPS343 (Parallel and HPC) Introduction Spring 2020 27 / 30

https://www.weforum.org/agenda/2018/09/end-of-an-era-what-computing-will-look-like-after-moores-law/


Power and Heat

Notes on the graph:

The “number of transistors” curve continues to follow Moore’s Law

The curves we really care about (clock speed, power) have leveled off

In fact clock speed has actually started to decline. . .

The problem is really one of power density; how much power is being
consumed (and therefore heat generated) per unit area

You may have noticed that the number of cores seems to be leveling off as
well – more about this later.

CPS343 (Parallel and HPC) Introduction Spring 2020 28 / 30



Power and Heat

Notes on the graph:

The “number of transistors” curve continues to follow Moore’s Law

The curves we really care about (clock speed, power) have leveled off

In fact clock speed has actually started to decline. . .

The problem is really one of power density; how much power is being
consumed (and therefore heat generated) per unit area

You may have noticed that the number of cores seems to be leveling off as
well – more about this later.

CPS343 (Parallel and HPC) Introduction Spring 2020 28 / 30



Power and Heat

Source: http://www.cs.kent.edu/~jbaker/ParallelProg-Sp11/slides/Baker-Chpt%201.ppt

CPS343 (Parallel and HPC) Introduction Spring 2020 29 / 30

http://www.cs.kent.edu/~jbaker/ParallelProg-Sp11/slides/Baker-Chpt%201.ppt


Shift to Multi-core

Drive to increasingly complex processor design and faster clock speeds
replaced with increased number of processor cores

current CPUs typically have between 2 and 16 cores

GPU devices typically have between 16 and several thousand cores
(Nvidia Tesla P100 GPU has 3,584 CUDA cores, 16GB of CoWoS
HBM2 memory, and is capable of 4.7 Teraflops (double precision))

MIC devices have many more cores than the typical CPUs (Intel Xeon
Phi Coprocessor 7295 has 72 cores running at 1.5GHz (1.6GHz max))

Moral: Today all computers are parallel computers!

CPS343 (Parallel and HPC) Introduction Spring 2020 30 / 30



Shift to Multi-core

Drive to increasingly complex processor design and faster clock speeds
replaced with increased number of processor cores

current CPUs typically have between 2 and 16 cores

GPU devices typically have between 16 and several thousand cores
(Nvidia Tesla P100 GPU has 3,584 CUDA cores, 16GB of CoWoS
HBM2 memory, and is capable of 4.7 Teraflops (double precision))

MIC devices have many more cores than the typical CPUs (Intel Xeon
Phi Coprocessor 7295 has 72 cores running at 1.5GHz (1.6GHz max))

Moral: Today all computers are parallel computers!

CPS343 (Parallel and HPC) Introduction Spring 2020 30 / 30


	Preface
	Course Details
	Course Requirements

	Background
	Definitions and Nomenclature
	Moore's Law


