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Built-in Datatypes

The MPI standard defines many built in datatypes, mostly mirroring
standard C/C++ or FORTRAN datatypes

These are sufficient when sending single instances of each type

They are also usually sufficient when sending contiguous blocks of a
single type

Sometimes, however, we want to send non-contiguous data or data
that is comprised of multiple types

MPI provides a mechanism to create derived datatypes that are
built from simple datatypes
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Typemaps

Derived datatypes in MPI are described by a typemap

Typemaps consist of an order pair or sequence of ordered pairs each
containing

a basic datatype
a displacement (integer offset)

For example, a typemap might consist of {(double,0),(char,8)}
indicating the type has two elements:

a double precision floating point value starting at displacement 0, and
a single character starting at displacement 8.
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Typemaps

Types also have extent, which indicates how much space is required
for the type

The extent of a type may be more than the sum of the bytes required
for each component

For example, on a machine that requires double-precision numbers to
start on an 16-byte boundary the type {(double,0),(char,8)} will have
an extent of 16 even though it only requires 9 bytes
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Derived Datatypes

MPI provides for user-constructed datatypes to handle a wide variety of
situations. Constructors exist for the following types of derived datatypes:

Contiguous

Vector

Hvector

Indexed

Hindexed

Indexed block

Struct

The “H” routines are the same as the similarly named types except that
strides and block displacements are specified in bytes.
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Creating and using a new datatype

Two steps are necessary to create and use a new datatype in MPI:

1 Create the type using one of MPI’s type construction routines
(explained next),

2 Commit the type using MPI_Type_commit().

Once a type has been committed it may be used in send, receive, and
other buffer operations.

A committed type can be released with MPI_Type_free().
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Contiguous type

The contiguous datatype allows for a single type to refer to multiple
contiguous elements of an existing datatype.

int MPI_Type_contiguous(

int count , // replication count

MPI_Datatype oldtype , // old datatype

MPI_Datatype* newtype) // new datatype

The new datatype is essentially an array of count elements having type
oldtype. For example, the following two code fragments are equivalent:

MPI_Send(a, n, MPI_DOUBLE , dest , tag , MPI_COMM_WORLD );

and

MPI_Datatype rowtype;

MPI_Type_contiguous(n, MPI_DOUBLE , &rowtype );

MPI_Type_commit (& rowtype );

MPI_Send(a, 1, rowtype , dest , tag , MPI_COMM_WORLD );
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Vector type

The vector datatype is similar to the contiguous datatype but allows for a
constant non-unit stride between elements.

int MPI_Type_vector(

int count , // number of blocks

int blocklength , // number of elements in each block

int stride , // number of elements between each block

MPI_Datatype oldtype , // old datatype

MPI_Datatype* newtype) // new datatype

For example, suppose an nx × ny Cartesian grid is stored so data in rows
(constant y) is contiguous. The following two types can be used to
communicate a single row and a single column of the grid:

MPI_Datatype xSlice , ySlice;

MPI_Type_vector(nx, 1, ny, MPI_DOUBLE , &xSlice );

MPI_Type_vector(ny, 1, 1, MPI_DOUBLE , &ySlice );

MPI_Type_commit (& xSlice );

MPI_Type_commit (& ySlice );
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Vector type

MPI_Type_vector(nx, 1, ny, MPI_DOUBLE , &xSlice );

y

x

Note: In contrast to how we view matrices, in C/C++ elements in a row
of a Cartesian grid have non-unit stride: u[0][0] and u[1][0] are not
contiguous.
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Vector type

MPI_Type_vector(ny, 1, 1, MPI_DOUBLE , &ySlice );

x

y

In general, the last index corresponds to the dimension with unit stride and
the first index corresponds to the dimension with greatest stride.
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Vector type

double ** u = new double* [nx];

u[0] = new double [nx * ny];

for ( i = 1; i < nx; i++ )

u[i] = &u[0][i * ny];

u

0 nx−1

nx−10

ny−1

0

contiguous data

(array of pointers)

Note that by this construction u is a
pointer to a pointer.

u[0] is a pointer to the start of the
first grid column.

Consecutive locations in memory
correspond to consecutive values of
the last array index; in this case
that is along the y axis.

If the grid was 3-dimensional,
consecutive memory locations would
be along z , consecutive z-columns
would be adjacent on the y axis,
and finally yz-slices would be
adjacent along the x axis.
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Indexed type

The indexed datatype provides for varying strides between elements.

int MPI_Type_indexed(

int count , // number of blocks

int* blocklengths , // number of elements per block

int* displacements , // displacement for each block

MPI_Datatype oldtype , // old datatype

MPI_Datatype* newtype) // new datatype

This generalizes the vector type; instead of a constant stride, blocks can
be of varying length and displacements. For example, the code fragment

int blocklen [] = {4, 2, 2, 6, 6};

int disp[] = {0, 8, 12, 16, 23};

MPI_Datatype mytype;

MPI_Type_indexed (5, blocklen , disp , MPI_DOUBLE , &mytype );

MPI_Type_commit (& mytype );

defines a type that corresponds to the shaded cells:

10 20 30

12 16 2380

0
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Struct type

The most general constructor allows for the creation of types representing
general C/C++ structs/classes.

int MPI_Type_create_struct(

int count , // number of blocks

int* blocklengths , // number of elements per block

MPI_Aint* displacements , // byte displacement of each block

MPI_Datatype* datatypes , // type of elements in each block

MPI_Datatype* newtype) // new datatype

The type MPI_Aint is an address type; variables of this type can hold valid
addresses (byte offsets from the start of memory).
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A sample grid

Typical 10× 10 grid

Lines separate grid elements
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Grid boundary

Grid boundary in cyan

Typically contains constant data

Grid points on interior change

We will assume grid elements
are updated using a 5-point
finite-difference stencil
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Partitioning the grid

Suppose we want to partition
the domain into four
subdomains

Could be done vertically or
horizontally

In this case, we’ll partition in
both directions
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Partitioning the grid

To update the grid point marked
with the black dot information is
needed from its four neighbors

The stencil shows the grid
points needed for the update

All accessed grid points are
inside the local subdomain

To update an adjacent grid
point we still only need to access
points inside the subdomain

But moving over one more, we
now need information from an
adjacent subdomain
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Adding interior boundaries

Assuming a message passing
environment, we want to
minimize communication

To facilitate this, we create
additional grid locations to hold
copies of data from adjacent
subdomains; these are often
called ghost points or the halo
region

Still need to transfer, but now
blocks can be transferred
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Adding interior boundaries

Before each new set of
updates...

Interior boundary data is sent to
processes working on adjacent
subdomains

Now accesses are once again
limited to local subdomain

True boundary data can be
copied, but will not be used
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Typical application

An important application that uses this pattern of data access is the
numerical solution of boundary value problems involving partial
differential equations

Programs are iterative, and repeatedly updates grid points with
various “sweeps” through the domain.

Between each sweep interior boundary data must be communicated

Need to avoid deadlock situations; suppose both processes
exchanging data send before receiving? This may or may not be a
problem, depending on how MPI_Send() is implemented.

We can avoid any problems, however, by using the MPI_Sendrecv()

function.
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MPI Sendrecv()

The calling sequence for MPI_Sendrecv() is

int MPI_Sendrecv(

void* sendbuf , // address of send buffer

int sendcount , // number of elements to send

MPI_Datatype sendtype , // type of elements to send

int dest , // rank of destination

int sendtag , // send tag

void* recvbuf , // address of receive buffer

int recvcount , // number of elements to receive

MPI_Datatype recvtype , // type of elements to receive

int source , // rank of source

int recvtag , // receive tag

MPI_Comm comm , // communicator

MPI_Status* status) // status object
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MPI Cartesian communicator

Steps necessary to set up a Cartesian communicator:

1 Construct new communicator to use rather than MPI_COMM_WORLD

2 Determine my portion of grid

3 Determine my neighbors

4 Adjust boundaries as needed

5 Create necessary MPI data types

6 Communicate!
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MPI Cartesian communicator code block 1

// Create Cartesian communicator

MPI_Dims_create( numProcesses , 2, dims );

MPI_Cart_create( MPI_COMM_WORLD , 2, dims , periodic ,

reorder , &comm2d );

MPI_Comm_rank( comm2d , &myRank );

dims[] is a two-dimensional array that contains the number of blocks
in the x and y dimensions we want the grid to have. If these values
are 0 then MPI chooses them for us.

Entries in periodic[] are non-zero to indicate the grid is periodic in
the corresponding dimension. Zero entries (as in this example) mean
grid is non-periodic.

If reorder is nonzero then processes can be be reassigned ranks,
possibility different than those they received during MPI initialization.

Rank will be determined relative to comm2d communicator, not
MPI_COMM_WORLD.
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MPI Cartesian communicator code block 2

// Figure out the size of my portion of the grid.

// x0 , y0 , x1 and y1 are the starting and ending

// indices of both dimensions of our portion of

// the grid.

MPI_Cart_get( comm2d , 2, dims , periodic , coords );

decompose1d( NX, dims[0], coords [0], &x0, &x1 );

decompose1d( NY, dims[1], coords [1], &y0, &y1 );

periodic[] gets filled with 0s or 1s to indicate if the grid is periodic
along the corresponding dimension.

coords[] gets filled with coordinates (indexed from 0) of the block
associated with the this process.

decompose1d() returns the start and ending values of subinterval for
this process. (See Using MPI by Gropp et al.)
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MPI Cartesian communicator code block 3

// Figure out who my neighbors are. left , right ,

// down , and up will be set to the rank of the

// process responsible for the corresponding block

// relative to the position of the block we are

// responsible for. If there is no neighbor in a

// particular direction the returned rank will be

// MPI_PROC_NULL which will be ignored by subsequent

// MPI_sendrecv () calls.

MPI_Cart_shift( comm2d , 0, 1, &left , &right );

MPI_Cart_shift( comm2d , 1, 1, &down , &up );

Second argument is shift axis: 0, 1, 2. . . for x , y , z . . .

Third argument for displacement to neighboring block:
> 0 for “up” shift,
< 0 for “down” shift.
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MPI Cartesian communicator code block 4

// Adjust domain bounds to account for internal

// domain boundary data. If we have a neighbor

// in a given direction (rank of neighbor is non -

// negative) then we need to adjust the starting

// or ending index.

if ( left >= 0 ) x0 --;

if ( right >= 0 ) x1++;

if ( down >= 0 ) y0 --;

if ( up >= 0 ) y1++;

nx = x1 - x0 + 1; // actual x size of our grid

ny = y1 - y0 + 1; // actual y size of our grid
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MPI Cartesian communicator code block 5

// Create my portion of the grid. For the exchange

// to work properly we must have a constant stride

// in each dimension. This is accomplished by

// allocating an array of pointers then allocating

// the full data array to the first pointer. The

// remaining pointers are set to point to the start

// of each "row" of contiguous data in the single

// linear array.

double ** u = new double* [nx];

u[0] = new double [nx * ny];

for ( i = 1; i < nx; i++ ) u[i] = &u[0][i * ny];
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MPI Cartesian communicator code block 6

// Create datatypes for exchanging x and y slices

MPI_Type_vector( nx, 1, ny, MPI_DOUBLE , &xSlice );

MPI_Type_commit( &xSlice );

MPI_Type_vector( ny, 1, 1, MPI_DOUBLE , &ySlice );

MPI_Type_commit( &ySlice );

Recall that

first argument is number of data blocks

second argument is number of data elements in a block

third argument is the stride

last argument is pointer to variable for new type
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MPI Cartesian communicator code block 7

// Exchange x-slices with top and bottom neighbors

MPI_Sendrecv( &u[0][ny -2], 1, xSlice , up, TAG ,

&u[0][0] , 1, xSlice , down , TAG ,

comm2d , MPI_STATUS_IGNORE );

MPI_Sendrecv( &u[0][1] , 1, xSlice , down , TAG ,

&u[0][ny -1], 1, xSlice , up , TAG ,

comm2d , MPI_STATUS_IGNORE );

// Exchange y-slices with left and right neighbors

MPI_Sendrecv( &u[nx -2][0] , 1, ySlice , right , TAG ,

&u[0][0] , 1, ySlice , left , TAG ,

comm2d , MPI_STATUS_IGNORE );

MPI_Sendrecv( &u[1][0] , 1, ySlice , left , TAG ,

&u[nx -1][0] , 1, ySlice , right , TAG ,

comm2d , MPI_STATUS_IGNORE );

Note the format of the first argument to each send-receive call. Doing this
ensures that the correct address is passed regardless of how the array u is
allocated.
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Exchange example

Grid subdomain and its four neighbors

nx−10

0

0

ny−1

nx−1

ny−1

ny−1

nx−1

0 0

0
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Exchange example

Send x-slice starting at u[0][ny-2]; receive into x-slice starting at u[0][0]
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Exchange example

Send x-slice starting at u[0][1]; receive into x-slice starting at u[0][ny-1]
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Exchange example

Send y -slice starting at u[nx-2][0]; receive into y -slice starting at u[0][0]
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Exchange example

Send y -slice starting at u[1][0]; receive into y -slice starting at u[nx-1][0]
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Exchange example

Interior nodes on subdomain can now be updated; dark gray nodes not referenced.
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Exchanges at domain boundary

You may wonder what happens with a process responsible for a
subdomain at the top (or bottom) of the grid executes the command

MPI_Sendrecv( &u[0][ny -2], 1, xSlice , up, TAG ,

&u[0][0] , 1, xSlice , down , TAG ,

comm2d , MPI_STATUS_IGNORE );

There is no neighboring subdomain above (or below)...

Recall that up, down, left, and right were rank values returned by
MPI_Cart_shift(). In the case of a subdomain at the top, up will be
MPI_PROC_NULL. Any send or receive operations to or from a process
with this rank will be ignored.

If, however, we’d indicated the grid was periodic, then up would be
assigned the rank of the process responsible for the bottom subdomain
in the same subdomain column; in other words it wraps around.
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