CPS343 (Parallel and HPC)

Parallel Architectures

CPS343

Parallel and High Performance Computing

Spring 2020

Parallel Architectures

Spring 2020

1/36

@ Poarallel Computer Classification
@ Flynn's Taxonomy
@ Other taxonomies

© Parallel Computer Architectures
@ Switched Network Topologies
@ Processor arrays
@ Multiprocessors
@ Multicomputers

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 2/36

Outline

@ Poarallel Computer Classification
@ Flynn's Taxonomy

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 3/36

Flynn's Taxonomy (1966)

] H Single Data \ Multiple Data ‘
Single SISD SIMD
Instruction uniprocessors processor arrays

pipelined vector processors

Multiple MISD MIMD
Instruction systolic arrays multiprocessors
multicomputers

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 4/36

Outline

@ Poarallel Computer Classification

@ Other taxonomies

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 5/36

Other taxonomies

@ SPMD — Single Program, Multiple Data. This is similar to SIMD
but indicates that a single program is used for the parallel application
i.e. every node runs the same program.

o MPMD — Multiple Program, Multiple Data. Like MIMD except this
explicitly uses more than one program for the parallel application.
Typically one is a master or control program and the others are slave
or compute programs.

@ Modern clusters typically follow one of these two models. It is often
convenient to use the SPMD model but have the program behave as
either a master or slave based on some criteria determined at
run-time (often the node on which the program is running).

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 6/36

utline

© Parallel Computer Architectures
@ Switched Network Topologies

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 7/36

o Diameter — largest distance between two switch nodes. Want this to
be as small as possible.

o Bisection width — smallest number of connections that need to be
severed to separate network into two distinct subnetworks of the same
size. Want this to be as large as possible.

o Edges per switch node — best if this is constant and independent of
network size.

o Edge length — physical length of wire or other media required for
connections. ldeally this is constant (does not grow with network
size).

o Direct Topology — every switch is connected to a node and other
switches.

o Indirect Topology — some switches are only connected to other
switches.

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 8/36

2-D Meshes with n processors

2-D Mesh 2-D Mesh with wrap-around (torus)

o—q—o

Qo=

) Switch Processor

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 9/36

2-D Meshes with n processors

@ Direct topology
@ 2-D mesh with wrap-around connections is a torus.

@ Diameter on non-wrap-around mesh is minimized when mesh is
square: 2(y/n—1). For a square mesh with wrap-around the diameter
is \/n.

@ Bisection width is also large—without wrap-around the bisection with
of a square mesh is v/n.

e Constant number of edges per switch (4 for the wrap-around version)
and can have constant edge length.

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 10 /36

Binary tree

) Switch Processor

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 11/36

@ Indirect topology.

@ Interior nodes are switches only connected to other switches; leaf
nodes are also connected to processors.

@ n =29 for some d and there are 2n — 1 switches.
@ Diameter is 2logn = 2d.

@ Bisection width is 1 — this is not good as all traffic from one side of
tree must travel though a single switch on its way to the other side.

@ Number of edges per switch is fixed at 3 for switches only connected
to other switches and 2 switches connected to processors.

o Edge length grows as nodes are added.

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 12 /36

Hypertree network of degree k and depth d

@ Indirect topology

o Keeps the diameter small (good) while making bisection width larger
(also good).

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 13 /36

14 /36

Spring 2020

0
L
=1
5}
ol
B
=
2
<
]
T
I
%

CPS343 (Parallel and HPC)

Butterfly network

Butterfly network

Indirect topology

n = 29 for some d and there are n(log n + 1) = n(d + 1) switches

arranged in d + 1 rows (called ranks) of length n.

Often the first and last rank of switches is physically the same but for

the purposes of this discussion are counted separately.

Let /, 0 </ < d, be a switch’s rank and let j, 0 < j < n, be the

switch's position within the rank. Switch(/,j) is connected to
switch((i +1), j) and switch((i + 1), inv(i,j))

where inv(i,j) means that the i most-significant bit (counting from

the left) in j is flipped.

Diameter is log n = d and bisection width is n. Number of edges per
switch is 4 but edge length does grow as depth of network increases.

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 15 /36

Butterfly network

For example suppose d = 3 so n = 23 = 8 and consider switch(1,4):

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 16 / 36

Butterfly network

For example suppose d = 3 so n = 23 = 8 and consider switch(1,4):
o (i+1)=(1+1)=2. Thus
switch(1,4) is connected to switch(2,4).
@ The 0" most-significant bit (counting from left) in j = 4 = 100, is 1.
@ The 1%t most significant bit is 0; flipping this gives 110, = 6 so
inv(1,4)=6. Thus
switch(1,4) is connected to switch(2,6).
@ What switches is switch(2,5) connected to?
o (i+1)=(2+1) =3 and flipping the 3™ most-significant bit in
5 = 101, gives 1002 = 4 so switch(2,5) is connected to
switch(3,5) and switch(3,4).

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 16 / 36

Butterfly network

Routing turns out to be relatively easy.

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 17 /36

Butterfly network

Routing turns out to be relatively easy.
@ Destination address is appended to message.

@ Each switch that processes message “pops’ most-significant bit from
destination address and routes message left if the bit is 0, else routes
message right.

© Remaining address bits are sent with message.

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 17 /36

Node 2 to Node 5

Send message:

X
—
(@)
=
s}
[0}
c
>
formy
—
(D)
=
Y
>
(a8}

Send message:
Node 2 to Node 5
Node 2 initiates a
message to node 5.

X
—
(@)
=
s}
[0}
c
>
formy
—
(D)
=
Y
>
(a8}

Butterfly network

Send message:
Node 2 to Node 5

Dest: 101
Switch 0,2 “pops”
leftmost bit from

destination address.

Bit is 1 so message is
routed down right path.

Remaining destination
address is 0O1.

Butterfly network

Send message:
Node 2 to Node 5

Dest: 01
Switch 1,6 “pops”
leftmost bit from

destination address.

Bit is 0 so message is
routed down left path.

Remaining destination
address is 1.

Butterfly network

Send message:
Node 2 to Node 5

Dest: 1
Switch 2,4 “pops”
leftmost bit from

destination address.

Bit is 1 so message is
routed down right path.

(0]

°

o

c

w0 L2

Q 0n o

g O <3
80 c 9
2 et

(v ma
a 9o o
Q = 3,a
o (V]

me = &
B B £4a
g O 4 = 9
w2 QO 0n E€uw;v

X
—
(@)
=
s}
[0}
c
>
formy
—
(D)
=
Y
>
(a8}

Butterfly network

Send message:
Node 2 to Node 5

Message arrives at node
5.

CPS343 (Parallel and HPC) Parallel Architectures

Hypercube network

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 19/

Hypercube network

Direct topology
n = 29 processors

0-D hypercube is a single processor.

1-D hypercube is a "line” of 2! = 2 processors with a single edge
connecting them.

2-D hypercube is a square of 2° = 4 processors with four edges.
@ 3-D hypercube is a cube of 23 = 8 processors with 12 edges.
@ 4-D hypercube is a hypercube of 2* = 16 processors with 32 edges.

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 20 /36

Hypercube network

@ Rule: to construct a (d + 1)-D hypercube, take two d-D dimensional
hypercubes and connect the corresponding vertices.

@ Nodes (or switches for nodes) are numbered using a Gray code: if
two nodes are adjacent then their codes differ by only a single bit.

@ Diameter is log n = d and bisection width is n/2. There are logn = d
edges per switch (not constant, which is not ideal) and the edge
lengths do grow as the number of processors grows (also not ideal).

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 21/36

Hypercube network

16 0-D hypercubes o\ C\
N N N N
N N

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 22 /36

Hypercube network

8 1-D hypercubes @\—@\
@ @

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 22 /36

Hypercube network

4 2-D hypercubes @
@@ @ @

00 01

®

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 22 /36

Hypercube network

2 3-D hypercubes
110,
010,

\

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 22 /36

Hypercube network

1 4-D hypercube

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 22 /36

Hypercube network

Routing in a hypercube network is fairly easy:

@ To route from one processor to another: start with address of source
node and flip any bit that differs from the corresponding bit in the
destination address. Send to the node whose address was just
generated. Repeat, always flipping a bit in a different position.

@ Example: consider a 5-D hypercube with 32 processors. Each node
has a 5 bit address. Suppose node 9 (01001,) wants to send a
message to node 30 (111102). The differing bits are 11111.

@ The order in which the bits are selected is immaterial but does lead to
non-unique communication paths. In this case there are 4! = 24
possible paths; here are two of them:

@ 01001 — 11001 — 11101 — 11111 — 11110
© 01001 — 01000 — 01010 — 01110 — 11110

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 23 /36

Outline

© Parallel Computer Architectures

@ Processor arrays

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 24 /36

Processor arrays

@ Multiple processors that carry out the same instruction in a given
instruction cycle.

o Typically paired with a "front-end” processor that is handing all the
other work of the system.

@ Often called vector processors since operations on vectors typically
involve identical operations on different data.

@ Processors have local memory and some form of interconnection
network (often a 2-D mesh) allowing for communication between
processors.

@ Masks can be used to selective enable/disable operations on
individual processors. (e.g. think absolute value—only want to
change sign if value is less than zero).

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 25 /36

Processor array disadvantages

As late as the mid 2000's processor arrays were viewed as old technology.
Reasons for this at the time included:

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 26 /36

Processor array disadvantages

As late as the mid 2000's processor arrays were viewed as old technology.
Reasons for this at the time included:

@ many problems do not map well to strictly data-parallel solution
@ conditionally executed parallel code is does not perform well

@ not well suited for multi-user situations—requires dedicated access to
processor array for best performance.

@ cost does not scale-down well
@ hard or impossible to do with COTS (commaodity off-the-shelf) parts
@ CPUs are relatively cheap (and getting faster)

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 26 /36

Processor arrays: GPU and accelerators

@ Recently processor arrays in the form of GPU and accelerators like
Intel’s Phi have become quite popular.

o We'll talk more about these soon. ..

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 27 /36

Outline

© Parallel Computer Architectures

@ Multiprocessors

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 28 /36

Multiprocessors

@ A computer with multiple CPUs or one or more multicore CPUs with
shared memory.

@ Common examples include dual-processor workstations and systems
with multiple cores in a single processor. Past supercomputers include
Cray X-MP and Y-MP.

e In a Symmetric multiprocessor (SMP) all processors are the same
and have equal (but shared) access to resources.

@ This is currently the standard model of desktop or laptop computers;
a CPU with multiple cores, various levels of cache, and common
access to single pool of RAM.

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 29 /36

Multiprocessor cache issues

e Typically each CPU (or core; henceforth we'll just say CPU) has at
least one level of cache. Data in the cache should be consistent with
corresponding data in memory. When a CPU writes to its cache, that
update must also be carried out in memory and in the caches of other
CPUs where the updated data may also be stored. This is called the
cache coherence problem.

@ Snooping — each CPU’s cache controller monitors bus so it is aware
what is stored in other caches. System uses this information to avoid
coherence problems.

@ One solution is the write invalidate protocol: When one CPU write
to its cache, the corresponding data in other’s cache is marked as
invalid. This causes a cache miss when any other CPU tries to read
the data from its own cache.

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 30/36

Multiprocessor synchronization

o Barriers — Points in a parallel program where all processors must be
at the same spot before proceeding.

@ Mutual Exclusion — Often there are critical sections in code where
the program must guarantee that only a single process accesses
certain memory for a period of time. (e.g., don't want one process
trying to read a memory location at the same instant another is
writing to it.) Semaphores provide one way to do this.

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 31/36

Multiprocessor Memory Access

e UMA (Unified Memory Access): Every processor has the same
view and access to memory. Connections can be through a bus or a
switched network. SMP machines typically belongs to the UMA
category.

@ Designs using a bus become less practical as the number of processors
increases.

e NUMA (NonUniform Memory Access) Distributed
Multiprocessor: Each processor has access to all memory but some
access is indirect. Often memory is distributed and associated with
each processor. There is a uniformly accessed virtual memory
composed of all the distributed segments.

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 32/36

Outline

© Parallel Computer Architectures

@ Multicomputers

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 33/36

Multicomputers

@ Commonly called distributed memory computers, these have multiple
CPUs each having exclusive access to a certain segment of memory.

@ Multicomputers can be symmetrical or asymmetrical.

@ Symmetrical multicomputers are typically a collection of identical
compute nodes.

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 34 /36

Asymmetric vs symmetric multicomputers

@ An asymmetrical multicomputer is a cluster of nodes with
differentiated tasks and resources.

@ Usually composed of front-end computer(s) called head nodes or login
nodes and multiple back-end compute nodes.

@ The head node typically handles program launching and supervision,
I/O, network connections, as well as user-interface activities such as
software development.

@ Often programmed using either SPMD or MPMD model. In the
SPMD case the program usually detects if it is running on the head
node or a compute node and behaves accordingly.

@ Supercomputer clusters that have dominated the supercomputer
industries for the last twenty years are examples of asymmetrical
multicomputers; many compute nodes and relatively few nodes for
I/O, cluster supervision, and program development.

@ Many small Beowulf clusters are symmetric multicomputers (or very
nearly so).

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 35/36

Acknowledgements

Some material used in creating these slides comes from

@ Parallel Programming in C with MPI and OpenMP, Michael Quinn,
McGraw-Hill, 2004.

CPS343 (Parallel and HPC) Parallel Architectures Spring 2020 36 /36

	Parallel Computer Classification
	Flynn's Taxonomy
	Other taxonomies

	Parallel Computer Architectures
	Switched Network Topologies
	Processor arrays
	Multiprocessors
	Multicomputers

