CPS343 (Parallel and HPC)

Parallel 1/0

CPS343

Parallel and High Performance Computing

Spring 2020

Parallel 1/O Spring 2020

© Overview of parallel 1/0
@ |/O strategies

@ MPI1/0

© Parallel HDF5
o Layers
@ Hyperslabs
o Example

CPS343 (Parallel and HPC) Parallel 1/O Spring 2020

Parallel cluster structure

compute nodes

TTiEETT

network / interconnect

g % gstorage nodes

CPS343 (Parallel and HPC) Parallel 1/O Spring 2020

Outline

© Overview of parallel 1/0
@ |/O strategies

CPS343 (Parallel and HPC) Parallel 1/O Spring 2020

ne file per process: all write

PO P

Memory H:

P3a

P2
u @ Each process writes to its own
(T

o Relatively simple |/O strategy.

@ Independent writes can perform
well because multiple storage
servers can support parallel 1/0
CEE to many separate files.

J
O] (]

Filea Fileb Filec Filsd @ Does not scale well if many
nodes will subsequently need to
access many different files.

Image source: Section 3 in http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-2490-40

CPS343 (Parallel and HPC) Parallel 1/O Spring 2020

http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-2490-40

Single shared file: one writes

PO P1 P2 P2 . . .
H:_ _# @ All processes involved in a write
Hemony H-FH # - operation send data to one
Tt{ | process, which then writes the

data to a single shared file.

@ Relatively simple; consolidates
data which may be an

File advantage.

o Uses data aggregation.

@ Writes are sequential and
performance is limited by
bandwidth of single process.

Image source: Section 3 in http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-2490-40

CPS343 (Parallel and HPC) Parallel 1/0 Spring 2020 6/22

http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-2490-40

Single shared file: all write

P2 F3

P
M n @ All processes involved in a write
v IR PR

H operation send data to a single
shared file.

@ Requires extra work by the
application to maintain the
separate file offsets for each
process.

o Parallel 1/0O can be achieved.

File:

Image source: Section 3 in http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-2490-40

CPS343 (Parallel and HPC) Parallel 1/O Spring 2020

http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-2490-40

Single shared file: some write

FO P1 P2 P2
:H @ A subset of all processes
Hemory | ! || Em HH involved in a write operation
) 4 sends data to a single shared
file.

@ Uses data aggregation.

T

] W 1 @ Sometimes used to strike a
re TN] balance between many processes
writing at the same time (with
resulting frequent extent lock
contention) and only one
process writing (with the
resulting loss of parallel 1/0).

Image source: Section 3 in http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-2490-40

CPS343 (Parallel and HPC) Parallel 1/0 Spring 2020 8/22

http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-2490-40

MPI 1/0

@ Developed by IBM in 1994 and subsequently appeared in MPI-2
standard

@ Uses underlying MPI send/receive routines to move data
@ Supports MPI derived datatypes

@ Both blocking and non-blocking send/receive modes are supported;
allows 1/0 in parallel with computation

@ read/write operations can be independent or collective

CPS343 (Parallel and HPC) Parallel 1/0 Spring 2020 9/22

Independent vs Collective 1/0O

Independent 1/0

@ The “one process per file" mode we've already seen is an example of
independent 1/0

@ 1/0 operations can occur in parallel
@ Only one process is reading to and/or writing from the file
Collective 1/0

@ Like other MPI collective operations, all processes sharing a
communicator must participate

@ |1/O operations can occur in parallel

@ Typically each process reads or writes a portion of the file
corresponding to its own memory space

CPS343 (Parallel and HPC) Parallel 1/O Spring 2020

Outline

© Parallel HDF5
o Layers

CPS343 (Parallel and HPC) Parallel 1/O Spring 2020

Parallel 1/0 stack

The parallel 1/0 stack on a Cray XT system is diagrammed as

MPI Application || MPI Application || MPI Application || MPI Application

Lustre

Image source: Section 2 in http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-2490-40

CPS343 (Parallel and HPC) Parallel I/O Spring 2020 12/

http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-2490-40

© Parallel HDF5

@ Hyperslabs

CPS343 (Parallel and HPC) Parallel 1/O Spring 2020

Hyperslabs

In HDF5 a hyperslab is a section of data. It is specified by four arrays,
each having the same dimension as the dataspace the hyperslab belongs
to. For dimension i:

offset (also called start) The offset to the start of the hyperslab in
dimension |

stride The increment between one element in the hyperslab to the
next element in dimension /

count The number of blocks to read or write from dimension i

block The number of elements in a block along dimension i

See “Writing and Reading Hyperslabs” at the bottom of

https://portal.hdfgroup.org/display/HDF5/Introduction+to+
Parallel+HDFb5.

CPS343 (Parallel and HPC) Parallel 1/0 Spring 2020 14 /22

https://portal.hdfgroup.org/display/HDF5/Introduction+to+Parallel+HDF5
https://portal.hdfgroup.org/display/HDF5/Introduction+to+Parallel+HDF5

Outline

© Parallel HDF5

o Example

CPS343 (Parallel and HPC) Parallel 1/O Spring 2020

Example: Writing in parallel to an HDF5 file

@ We assume that unique data is distributed among multiple processes
and each process wants to write its portion of the data into a single
shared file at the appropriate location.

@ That is, the data in the output file should be organized in a specific
way and the various processes need to write their data into the file at
the appropriate place to honor the desired organization.

@ In this example we assume we have an N, x N, 2-D Cartesian grid
where each process holds an n, x n, portion of the grid and we want
to write the data into a single file as if one process wrote the entire
grid.

CPS343 (Parallel and HPC) Parallel 1/0 Spring 2020 16 /22

Example: Writing in parallel to an HDF5 file

The following are the typical steps used to create and write an HDF5 file
in parallel.

@ Create a property list from the MPI communicator.
@ Create the output file.

© Create a global dataspace and dataset descriptor for the output file
that will hold data from all processes.

@ Create the local dataspace corresponding to portion of the global
dataspace belonging to a single process.

© Define the hyperslab in the global dataspace for the data.
@ Define the hyperslab in the local dataspace for the data.
@ Set transfer mode to be collective (not independent).

© Write the data.

© Release all open dataspaces, datasets descriptors, etc.

CPS343 (Parallel and HPC) Parallel 1/0 Spring 2020 17 /22

Create a property list and file

@ First we create the property list plist_id and initialize it with data
from the MPIl communicator comm.

hid_t plist_id = H5Pcreate (H5P_FILE_ACCESS);
H5Pset_fapl_mpio(plist_id, comm, MPI_INFO_NULL);

@ Then we can create an empty file with the properties contained in the
property list.
hid_t file_id = H5Fcreate(fname, H5F_ACC_TRUNC,

H5P_DEFAULT, plist_id);
H5Pclose (plist_id);

Note that we can also close (i.e. free) the property list since we're
finished with it.

CPS343 (Parallel and HPC) Parallel 1/0 Spring 2020 18 /22

Create dataspaces and file dataset descriptor

@ The global dataspace, representing what will be written to the file,
should hold the entire grid so it must be dimensioned N, x N, .
hsize_t dimsf[2], dimsm[2];
dimsf [0] = NX;
dimsf [1] = NY;
dataspace_id = Hb5Screate_simple (2, dimsf, NULL);

@ We also create the dataset named "/grid" in the file.

dataset_id = Hb5Dcreate(file_id, "/grid", H5T_IEEE_F64LE,
dataspace_id,
H5P_DEFAULT, H5P_DEFAULT,
H5P_DEFAULT) ;

e Each process contains an ny x n, subgrid of data (perhaps including
halo/ghost data) and here we create a dataspace to represent this.

dimsm [0] = halo_grid->nx;
dimsm [1] = halo_grid->ny;
memspace_id = H5Screate_simple (2, dimsm, NULL);

CPS343 (Parallel and HPC) Parallel 1/0 Spring 2020 19 /22

Define the hyperslab in the global dataspace

We need to define two hyperslabs which have the same dimensions. The
first locates the local data in the global dataspace while the second locates
the same data in the local dataspace.

o Create hyperslab for ny x ny, subgrid starting at (xo, yo0)-

hsize_t offset[t], count[2];

offset [0] = orig_grid->x0;

offset [1] = orig_grid->yo0;

count [0] orig_grid->nx;

count [1] = orig_grid->ny;

HESselect_hyperslab(dataspace_id, H5S_SELECT_SET,
offset, NULL, count, NULL);

o Create hyperslab for n, x n, subgrid start at either (0,0) (in the case
of no halo) or at some offset location to skip over halo values.
offset [0] = orig_grid->x0 - halo_grid->x0;
offset [1] = orig_grid->y0 - halo_grid->yo0;
H5Sselect_hyperslab(memspace_id, H5S_SELECT_SET,

offset, NULL, count, NULL);

CPS343 (Parallel and HPC) Parallel 1/0 Spring 2020 20/22

Set transfer mode and write the data

We're now almost ready to write. First we must set the data transfer
mode to collective rather than the default mode independent.

@ Get the current dataset transfer property list and modify it to be
collective.

plist_id = H5Pcreate (H5P_DATASET_XFER);
H5Pset_dxpl_mpio(plist_id, HSFD_MPIO_COLLECTIVE);

o Finally we can write the data. The address of first element of the local
data is &u[0] [0]; any adjustment do to halo data (which should not
be written) was accounted for when the local hyperslab was defined.

H5Dwrite (dataset_id, H5T_NATIVE_DOUBLE, memspace_id,
dataspace_id, plist_id, &ul[0][0]);

CPS343 (Parallel and HPC) Parallel 1/0 Spring 2020 21/22

Release all open dataspaces, datasets descriptors, etc

@ We are all done, we just need to free up the resources we allocated in
order to write the file and close the file.

H5Pclose (plist_id);
H5Sclose (memspace_id);
H5Dclose (dataset_id);
H5Sclose (dataspace_id);
H5Fclose(file_id);

@ The complete example program can be found at: http:
//www.cs.gordon.edu/courses/cps343/code/cart-hdf5.cc

CPS343 (Parallel and HPC) Parallel 1/0

Spring 2020 22/22

http://www.cs.gordon.edu/courses/cps343/code/cart-hdf5.cc
http://www.cs.gordon.edu/courses/cps343/code/cart-hdf5.cc

	Overview of parallel I/O
	I/O strategies

	MPI I/O
	Parallel HDF5
	Layers
	Hyperslabs
	Example

