CPS343 (Parallel and HPC)

Parallel Sorting

CPS343

Parallel and High Performance Computing

Spring 2020

Parallel Sorting

Spring 2020

1/34

© Overview of Sorting
@ Sorting Characteristics
@ Bubble Sort
@ Quicksort
© Mergesort

© Parallel Sorting
@ Assumptions
@ Parallel Quicksort
@ Parallel Sample Sort
o Parallel Sorting by Regular Sampling (PSRS)

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 2/34

Outline

© Overview of Sorting
@ Sorting Characteristics

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 3/34

Sorting Terms

@ Sorting involves rearranging records into some specified order.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 4/34

@ Sorting involves rearranging records into some specified order.

@ The key is used to determine the order; typically we sort so that they
keys are in nondecreasing order. If a; is the key for the it" record,
then after the sort a; < a; if / < j.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 4/34

@ Sorting involves rearranging records into some specified order.

@ The key is used to determine the order; typically we sort so that they
keys are in nondecreasing order. If a; is the key for the it" record,
then after the sort a; < a; if / < j.

@ The other data in the record is called satellite data.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 4/34

@ Sorting involves rearranging records into some specified order.

@ The key is used to determine the order; typically we sort so that they
keys are in nondecreasing order. If a; is the key for the it" record,
then after the sort a; < a; if / < j.

@ The other data in the record is called satellite data.

@ If the entire sorting operation can be carried out using main memory,
the sort is called an internal sort.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 4/34

@ Sorting involves rearranging records into some specified order.

@ The key is used to determine the order; typically we sort so that they
keys are in nondecreasing order. If a; is the key for the it" record,
then after the sort a; < a; if / < j.

@ The other data in the record is called satellite data.

@ If the entire sorting operation can be carried out using main memory,
the sort is called an internal sort.

o If the data set is too large for this, then must use an external sort.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 4/34

@ Sorting involves rearranging records into some specified order.

@ The key is used to determine the order; typically we sort so that they
keys are in nondecreasing order. If a; is the key for the it" record,
then after the sort a; < a; if / < j.

@ The other data in the record is called satellite data.

@ If the entire sorting operation can be carried out using main memory,
the sort is called an internal sort.

o If the data set is too large for this, then must use an external sort.

@ A sorting algorithm is called in place if no additional memory is
required for the sort. (Well, a small amount of additional memory
may be required, but the amount is not a function of the size of the
list to be sorted.)

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 4/34

Sorting involves rearranging records into some specified order.

The key is used to determine the order; typically we sort so that they
keys are in nondecreasing order. If a; is the key for the it" record,
then after the sort a; < a; if / < j.

The other data in the record is called satellite data.

If the entire sorting operation can be carried out using main memory,
the sort is called an internal sort.

If the data set is too large for this, then must use an external sort.

A sorting algorithm is called in place if no additional memory is
required for the sort. (Well, a small amount of additional memory
may be required, but the amount is not a function of the size of the
list to be sorted.)

A sorting algorithm is called stable if the relative order of elements
with equal keys is unchanged by the sorting algorithm.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 4/34

Compare and Exchange

@ A basic operation in many sorting algorithms is compare and exchange

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 5/34

Compare and Exchange

@ A basic operation in many sorting algorithms is compare and exchange

@ Suppose we're trying to sort a list in increasing order. The key
operation (assuming i < j) is

CPS343 (Parallel and HPC)

if a; > a; then
t = a;
a; = dj
aj=t
endif

Parallel Sorting Spring 2020 5/34

Compare and Exchange

@ A basic operation in many sorting algorithms is compare and exchange

@ Suppose we're trying to sort a list in increasing order. The key
operation (assuming i < j) is

if a; > a; then
t = a;
a; = dj
aj=t
endif

@ This operation is called a swap and is written swap(x,y)

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 5/34

Compare and Exchange

@ A basic operation in many sorting algorithms is compare and exchange

@ Suppose we're trying to sort a list in increasing order. The key
operation (assuming i < j) is

if a; > a; then
t = a;
a; = dj
aj=t
endif

@ This operation is called a swap and is written swap(x,y)

@ An example that uses this approach is the bubble sort

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 5/34

Compare and Exchange

@ A basic operation in many sorting algorithms is compare and exchange

@ Suppose we're trying to sort a list in increasing order. The key
operation (assuming i < j) is

if a; > a; then
t = a;
a; = dj
aj=t
endif

@ This operation is called a swap and is written swap(x,y)
@ An example that uses this approach is the bubble sort

@ Other sorts (e.g. mergesort) do not have compare and exchange as a
basic operation.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 5/34

Outline

© Overview of Sorting

@ Bubble Sort

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 6/34

Bubble Sort

@ The Bubble sort gets its name from the way smaller list elements
“bubble” up in the list throughout the sort

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 7/34

Bubble Sort

@ The Bubble sort gets its name from the way smaller list elements
“bubble” up in the list throughout the sort

@ Given an n element list of integers a;, i =0,1,...,n—1:
done = false
last = n—2

while not done do
done = true
for i = 0 to last do
if aj > aj+1 then
done = false
swap(aj,ajt+1)
endif
endfor
last = last — 1
endwhile

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 7/34

Bubble Sort

For example, consider the bubble sort applied to a list of eight numbers.
The number in bold in each column represents a; and is compared with
the next number in the list.

(@]l =] [>][~]e]

CPS343 (Parallel and HPC Parallel Sorting Spring 2020 8/34
/

Bubble Sort

For example, consider the bubble sort applied to a list of eight numbers.
The number in bold in each column represents a; and is compared with
the next number in the list.

(@]l =] [>][~]e]
(o]~][] ~]]

CPS343 (Parallel and HPC Parallel Sorting Spring 2020 8/34
/

Bubble Sort

For example, consider the bubble sort applied to a list of eight numbers.
The number in bold in each column represents a; and is compared with
the next number in the list.

(@]l =] [>][~]e]
(o]~][] ~]]
BB EENEENE

CPS343 (Parallel and HPC Parallel Sorting Spring 2020 8/34
/

Bubble Sort

For example, consider the bubble sort applied to a list of eight numbers.
The number in bold in each column represents a; and is compared with
the next number in the list.

(@]l =] [>][~]e]
(o]~][] ~]]
BB EENEENE
EY B R EY EI RIS)

CPS343 (Parallel and HPC Parallel Sorting Spring 2020 8/34
/

Bubble Sort

For example, consider the bubble sort applied to a list of eight numbers.
The number in bold in each column represents a; and is compared with
the next number in the list.

BB EENEENE
[ollw]=]e[>[~]]]

(@]l =] [>][~]e]
(o]~][] ~]]
EY B R EY EI RIS)

CPS343 (Parallel and HPC Parallel Sorting Spring 2020 8/34
/

Bubble Sort

For example, consider the bubble sort applied to a list of eight numbers.
The number in bold in each column represents a; and is compared with
the next number in the list.

BB EENEENE
(o]~ o] [~]
(@]l Jeo] =& [~]

(@]l =] [>][~]e]
(o]~][] ~]]
EY B R EY EI RIS)

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 8/34

Bubble Sort

For example, consider the bubble sort applied to a list of eight numbers.
The number in bold in each column represents a; and is compared with
the next number in the list.

BB EENEENE
[ollw]=]e[>[~]]]

EY B R EY EI RIS)

(@]l =] [>][~]e]
(o]~][] ~]]
(@]l Jeo] =& [~]
(@] [=][~]

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 8/34

Bubble Sort

For example, consider the bubble sort applied to a list of eight numbers.
The number in bold in each column represents a; and is compared with
the next number in the list.

[ollw]=]e[>[~]]]
(@]l Jeo] =& [~]
(@] [=][~]
(o[o[=& [~ o]]

(@]l =] [>][~]e]
(o]~][] ~]]
BB EENEENE
EY B R EY EI RIS)

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 8/34

Bubble Sort

The second sweep looks like

B EERERNE

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 9/34

Bubble Sort

The second sweep looks like

(][]

B EERERNE
(@[ofw]=]~]~]

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 9/34

Bubble Sort

The second sweep looks like

(][]

B EERERNE
(@[ofw]=]~]~]
(@ [ofw]=]+]~]o]m]

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 9/34

Bubble Sort

The second sweep looks like

(][]

B EERERNE
(@[ofw]=]~]~]

(@ [ofw]=]+]~]o]m]
B EEEREN

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 9/34

)
-
o

Up)]

Q

0

0
>

m

[~ +[=]~][] o]]

[~]~[=]w] o] =]

(o]~ [=]=]e]o]]

[w]=[<][~]w]o]]

The second sweep looks like

(o]]~[<][~]w]o]]

9/34

Spring 2020

&0
c
5
£
o
0
K]
=
&
a

CPS343 (Parallel and HPC)

)
-
o

Up)]

Q

0

0
>

m

The second sweep looks like

[~ + =[]~ [o]]

[~ +[=]~][] o]]

[~]~[=]w] o] =]

(o]~ [=]=]e]o]]

[w]=[<][~]w]o]]

(o]]~[<][~]w]o]]

9/34

Spring 2020

80
c
5
£
o
0
K]
=
&
a

CPS343 (Parallel and HPC)

)
-
o

Up)]

Q

0

0
>

m

The second sweep looks like

[[]+[=[]e]~]]

[~ + =[]~ [o]]

[~ +[=]~][] o]]

[~]~[=]w] o] =]

(o]~ [=]=]e]o]]

[w]=[<][~]w]o]]

(o]]~[<][~]w]o]]

9/34

Spring 2020

80
c
5
£
o
n
K]
=
&
a

CPS343 (Parallel and HPC)

Bubble Sort

The second sweep looks like

(][]

(@ [ofw]=]+]~]o]m]
B EEEREN
@[ofe]~][=]+[a]~]
@ [o]~]e=]+[a]m]
BN N EEEN

B EERERNE
(@[ofw]=]~]~]

Notice that we have one fewer comparison since the largest element in the
list is already at the bottom.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 9/34

Bubble Sort

The third sweep looks like

(@[~ [ofe]m[s]o]w]

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 10 /34

Bubble Sort

The third sweep looks like

5]
6] [6]

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 10 /34

Bubble Sort

The third sweep looks like

(]

(@[~ [ofe]m[s]o]w]
(e[~ [ofe]~]s]
(@[~ [ofe]=[a]s]]

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 10 /34

Bubble Sort

The third sweep looks like

5]
5]
5
6] 6] [6] [6]

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 10 /34

)
-
o

Up)]

Q

0

0
>

m

[+ =[] w]] o]

[+]=]w]w]] ~]x]

[+]w]=[e]fo]~]c]

[+~ e]]

The third sweep looks like

(o< [=]w]][]

10/34

Spring 2020

80
c
5
£
o
0
K]
=
&
a

CPS343 (Parallel and HPC)

)
-
o

Up)]

Q

0

0
>

m

The third sweep looks like

([«][] w]] o]

[+ =[] w]] o]

[+]=]w]w]] ~]x]

[+]w]=[e]fo]~]c]

[+~ e]]

(o< [=]w]][]

10/34

Spring 2020

80
c
5
£
o
0
K]
=
&
a

CPS343 (Parallel and HPC)

Bubble Sort

The third sweep looks like

(@[~ [ofe]m[s]o]w]
(@[~ [ofe]~[s]o]m]
(e[~ [ofw]a]=]]n]
BN EIN RN
(@[~ [ofa]el=]]]

(@[~ [ofe]=[a]s]]

Now the last three elements are all in place. After four more sweeps the
list will be sorted.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 10 /34

Bubble Sort

@ Although simple in concept, the bubble sort is not very efficient.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 11/34

Bubble Sort

@ Although simple in concept, the bubble sort is not very efficient.

@ In the worst case the outer loop is done n — 1 times.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 11/34

Bubble Sort

@ Although simple in concept, the bubble sort is not very efficient.
@ In the worst case the outer loop is done n — 1 times.

@ The first time through the inner loop body is executed n — 1 times.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 11/34

Bubble Sort

Although simple in concept, the bubble sort is not very efficient.
In the worst case the outer loop is done n — 1 times.

The first time through the inner loop body is executed n — 1 times.

Each subsequent time the inner loop body is executed one fewer time.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 11/34

Bubble Sort

Although simple in concept, the bubble sort is not very efficient.
In the worst case the outer loop is done n — 1 times.
The first time through the inner loop body is executed n — 1 times.

Each subsequent time the inner loop body is executed one fewer time.

This means that in the worst case the number comparisons is
(n—1)+(n—2)+---+2+1=n(n—1)/2 which is O(n?).

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 11/34

Bubble Sort

@ Although simple in concept, the bubble sort is not very efficient.

@ In the worst case the outer loop is done n — 1 times.

@ The first time through the inner loop body is executed n — 1 times.

@ Each subsequent time the inner loop body is executed one fewer time.

@ This means that in the worst case the number comparisons is
(n—1)+(n—2)+---+2+1=n(n—1)/2 which is O(n?).

@ The number of comparisons in the average case is also O(n?).

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 11/34

Outline

© Overview of Sorting

@ Quicksort

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 12 /34

@ Uses divide and conquer strategy.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 13 /34

Quicksort

@ Uses divide and conquer strategy.

@ Given a list of n elements, choose one element as a pivot.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 13 /34

@ Uses divide and conquer strategy.
@ Given a list of n elements, choose one element as a pivot.

@ Reorder list so all elements smaller than the pivot come before it and
all elements larger than the pivot come after it.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 13 /34

Uses divide and conquer strategy.

Given a list of n elements, choose one element as a pivot.

@ Reorder list so all elements smaller than the pivot come before it and
all elements larger than the pivot come after it.

@ Pivot is now in its proper place and the list has been partitioned into
two sublists that must still be sorted.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 13 /34

Uses divide and conquer strategy.

Given a list of n elements, choose one element as a pivot.

Reorder list so all elements smaller than the pivot come before it and
all elements larger than the pivot come after it.

@ Pivot is now in its proper place and the list has been partitioned into
two sublists that must still be sorted.

Quicksort is naturally recursive.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 13 /34

@ Uses divide and conquer strategy.
@ Given a list of n elements, choose one element as a pivot.

@ Reorder list so all elements smaller than the pivot come before it and
all elements larger than the pivot come after it.

@ Pivot is now in its proper place and the list has been partitioned into
two sublists that must still be sorted.

@ Quicksort is naturally recursive.

@ Average number of comparisons is O(nlog n).

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 13 /34

@ Uses divide and conquer strategy.
@ Given a list of n elements, choose one element as a pivot.

@ Reorder list so all elements smaller than the pivot come before it and
all elements larger than the pivot come after it.

@ Pivot is now in its proper place and the list has been partitioned into
two sublists that must still be sorted.

@ Quicksort is naturally recursive.
@ Average number of comparisons is O(nlog n).

o Worst case number of comparisons is O(n?).

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 13 /34

Often the first element in the list is used as the pivot, although other
mechanisms can be used. ldeally pivot is median of sorted list.

Here red indicates the selected pivot and elements in blue are previous
pivots that now partition the list.

(o]~]e]]~]e]

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 14 /34

Often the first element in the list is used as the pivot, although other
mechanisms can be used. ldeally pivot is median of sorted list.

Here red indicates the selected pivot and elements in blue are previous
pivots that now partition the list.

(o]~]e]]~]e]
EIBRCIR RN

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 14 /34

Often the first element in the list is used as the pivot, although other
mechanisms can be used. ldeally pivot is median of sorted list.

Here red indicates the selected pivot and elements in blue are previous
pivots that now partition the list.

(o]~]e]]~]e]
EIBRCIR RN
(o]l ~[e]wl=]>]]

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 14 /34

Often the first element in the list is used as the pivot, although other
mechanisms can be used. ldeally pivot is median of sorted list.

Here red indicates the selected pivot and elements in blue are previous
pivots that now partition the list.

EIBRCIR RN
EYEIRIEI R EN S
[@]~[o]ofw]s]m]=]

(o]~]e]]~]e]

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 14 /34

Often the first element in the list is used as the pivot, although other
mechanisms can be used. ldeally pivot is median of sorted list.

Here red indicates the selected pivot and elements in blue are previous
pivots that now partition the list.

EIBRCIR RN
EYEIRIEI R EN S
[@]~[o]ofw]s]m]=]
[el[~]o]e]e]][]

(o]~]e]]~]e]

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 14 /34

Often the first element in the list is used as the pivot, although other
mechanisms can be used. ldeally pivot is median of sorted list.

Here red indicates the selected pivot and elements in blue are previous
pivots that now partition the list.

EIBRCIR RN
EYEIRIEI R EN S
[@]~[o]ofw]s]m]=]
[el[~]o]e]e]][]
SRR ERNNE

(o]~]e]]~]e]

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 14 /34

Often the first element in the list is used as the pivot, although other
mechanisms can be used. ldeally pivot is median of sorted list.

Here red indicates the selected pivot and elements in blue are previous
pivots that now partition the list.

EIBRCIR RN
EYEIRIEI R EN S
[@]~[o]ofw]s]m]=]
[el[~]o]e]e]][]
SRR ERNNE
(e ~[ofo]sfe]m]=]

(o]~]e]]~]e]

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 14 /34

Outline

© Overview of Sorting

© Mergesort

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 15 /34

@ Like Quicksort, Mergesort uses a divide and conquer strategy, and is
naturally recursive.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 16 /34

@ Like Quicksort, Mergesort uses a divide and conquer strategy, and is
naturally recursive.
@ Basic algorithm:

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 16 /34

@ Like Quicksort, Mergesort uses a divide and conquer strategy, and is
naturally recursive.

@ Basic algorithm:
@ if list length is 0 or 1 then return.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 16 /34

@ Like Quicksort, Mergesort uses a divide and conquer strategy, and is
naturally recursive.

@ Basic algorithm:

@ if list length is 0 or 1 then return.
@ npartition list into two sublists of (nearly) equal size.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 16 /34

@ Like Quicksort, Mergesort uses a divide and conquer strategy, and is
naturally recursive.
@ Basic algorithm:
@ if list length is 0 or 1 then return.

@ npartition list into two sublists of (nearly) equal size.
© sort each sublist using mergesort.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 16 /34

@ Like Quicksort, Mergesort uses a divide and conquer strategy, and is
naturally recursive.
@ Basic algorithm:

@ if list length is 0 or 1 then return.

@ npartition list into two sublists of (nearly) equal size.
© sort each sublist using mergesort.

© merge both sublists into one sorted list.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 16 /34

[6]

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 17 /34

6l e

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 17 /34

4+
-
(@)
(%)
()
a0
e
(D)

=

fo~] [a]e] [£]=] [~]e]

(o]~]e] [s]=]e]<]

Lo~ Jafe]+[=]=]<]

34

17/

Parallel Sorting Spring 2020

CPS343 (Parallel and HPC)

17/34

Spring 2020

80
c
5
o
o
0
K]
=
&
a

(o] [~ [o] [o] [&] [2] [=] [9]

fo~] [a]e] [£]=] [~]e]

(o]~]e] [s]=]e]<]

CPS343 (Parallel and HPC)

Lo~ Jafe]+[=]=]<]

4+
j-
(@)
(%)
()
a0
e
(D)

=

17/34

Spring 2020

[o~] [a]e] [=]+] [e]e]

&0
c
5
£
o
0
K]
=
&
a

(o] [~ [o] [o] [&] [2] [=] [9]

fo~] [a]e] [£]=] [~]e]

(o]~]e] [s]=]e]<]

CPS343 (Parallel and HPC)

Lo~ Jafe]+[=]=]<]

4+
j-
(@)
(%)
()
a0
e
(D)

=

17/34

Spring 2020

(@] [=]w]+]<]

[o~] [a]e] [=]+] [e]e]

&0
c
5
£
o
0
K]
=
&
a

(o] [~ [o] [o] [&] [2] [=] [9]

fo~] [a]e] [£]=] [~]e]

(o]~]e] [s]=]e]<]

CPS343 (Parallel and HPC)

Lo~ Jafe]+[=]=]<]

4+
j-
(@)
(%)
()
a0
e
(D)

=

17/34

Spring 2020

(o]~ o]~]e]

(@] [=]w]+]<]

[o~] [a]e] [=]+] [e]e]

Parallel Sorting

(o] [~ [o] [o] [&] [2] [=] [9]

fo~] [a]e] [£]=] [~]e]

(o]~]e] [s]=]e]<]

o
o
S
2
©
K]
=
I
o
)
<
o)
0
o
O

Lo~ Jafe]+[=]=]<]

4+
j-
(@)
(%)
()
a0
e
(D)

=

o Like the Quicksort the average number of comparisons is O(nlog n).

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 18 /34

o Like the Quicksort the average number of comparisons is O(nlog n).

@ Unlike the Quicksort, the worst case number of comparisons is also
O(nlog n).

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 18 /34

Outline

© Parallel Sorting
@ Assumptions

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 19 /34

General Assumptions

We begin by stating exactly the sorting problem we are considering.

@ computer is a parallel cluster with p nodes.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 20/34

General Assumptions

We begin by stating exactly the sorting problem we are considering.
@ computer is a parallel cluster with p nodes.

o list of length n is stored such that each cluster node has a
approximately [n/p] elements of the list.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 20/34

General Assumptions

We begin by stating exactly the sorting problem we are considering.
@ computer is a parallel cluster with p nodes.

o list of length n is stored such that each cluster node has a
approximately [n/p] elements of the list.

@ sort keys are integers

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 20/34

Outline

© Parallel Sorting

@ Parallel Quicksort

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 21/34

Parallel Quicksort Algorithm Assumptions

@ Assume number of processes p and total length of the list n are both
powers of 2.

CPS343 (Parallel and HPC Parallel Sorting Spring 2020 22 /34
/

Parallel Quicksort Algorithm Assumptions

@ Assume number of processes p and total length of the list n are both
powers of 2.

@ The process list can be partitioned into two halves using the most
significant bit of process ID. Processes with a leading 0 in their ID are
in the lower half of the process list while those with a leading 1 are in
the upper half.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 22/34

Parallel Quicksort Algorithm Assumptions

@ Assume number of processes p and total length of the list n are both
powers of 2.

@ The process list can be partitioned into two halves using the most
significant bit of process ID. Processes with a leading 0 in their ID are
in the lower half of the process list while those with a leading 1 are in
the upper half.

@ Partner processes have the same ID except for the leading bit.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 22/34

Parallel Quicksort Algorithm Assumptions

@ Assume number of processes p and total length of the list n are both
powers of 2.

@ The process list can be partitioned into two halves using the most
significant bit of process ID. Processes with a leading 0 in their ID are
in the lower half of the process list while those with a leading 1 are in
the upper half.

@ Partner processes have the same ID except for the leading bit.
@ For example, suppose there are eight processes. Then we'd have

lower half upper half

000 100
001 101
010 110
011 111

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 22/34

Parallel Quicksort Algorithm

@ One process selects the pivot and broadcasts to all processes.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 23 /34

Parallel Quicksort Algorithm

@ One process selects the pivot and broadcasts to all processes.

@ Each process in the lower half of the process list sends list elements
greater than the pivot to their partners in the upper half of the list.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 23 /34

Parallel Quicksort Algorithm

@ One process selects the pivot and broadcasts to all processes.

@ Each process in the lower half of the process list sends list elements
greater than the pivot to their partners in the upper half of the list.

@ Meanwhile, each process in the upper half of the process list sends list
elements less than the pivot to their partners in the lower half.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 23 /34

Parallel Quicksort Algorithm

@ One process selects the pivot and broadcasts to all processes.

@ Each process in the lower half of the process list sends list elements
greater than the pivot to their partners in the upper half of the list.

@ Meanwhile, each process in the upper half of the process list sends list
elements less than the pivot to their partners in the lower half.

@ The upper and lower halves of the process list are now treated as
separate process lists each with p/2 processes. Appropriate upper and
lower half lists are identified and the algorithm recurses.

original lower half original upper half
lower half upper half lower half upper half

000 010 100 110

001 011 101 111

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 23 /34

Parallel Quicksort Algorithm

@ One process selects the pivot and broadcasts to all processes.

@ Each process in the lower half of the process list sends list elements
greater than the pivot to their partners in the upper half of the list.

@ Meanwhile, each process in the upper half of the process list sends list
elements less than the pivot to their partners in the lower half.

@ The upper and lower halves of the process list are now treated as
separate process lists each with p/2 processes. Appropriate upper and
lower half lists are identified and the algorithm recurses.

original lower half original upper half
lower half upper half lower half upper half

000 010 100 110

001 011 101 111

@ After log, p recursions each process has its final portion of the entire
list; all that remains is to sort it using a sequential sort.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 23 /34

Parallel Quicksort Computation Cost

@ During the first phase each process makes n/p comparisons.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 24 /34

Parallel Quicksort Computation Cost

@ During the first phase each process makes n/p comparisons.

@ In the ideal case each process continues to be responsible for n/p list
items and subsequent phases of the sort also require n/p comparisons.
Since there are log, p steps, the comparison count will be (nlog, p)/p.

CPS343 (Parallel and HPC Parallel Sorting Spring 2020 24 /34
/

Parallel Quicksort Computation Cost

@ During the first phase each process makes n/p comparisons.

@ In the ideal case each process continues to be responsible for n/p list
items and subsequent phases of the sort also require n/p comparisons.
Since there are log, p steps, the comparison count will be (nlog, p)/p.

@ Unfortunately, the sublist sizes in each process are unlikely to remain
uniform. This means that the comparison work will become
unbalanced and, in the worst case where one process is responsible for
a majority of the list, approach the level for a sequential algorithm.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 24 /34

Parallel Quicksort Computation Cost

@ During the first phase each process makes n/p comparisons.

@ In the ideal case each process continues to be responsible for n/p list
items and subsequent phases of the sort also require n/p comparisons.
Since there are log, p steps, the comparison count will be (nlog, p)/p.

@ Unfortunately, the sublist sizes in each process are unlikely to remain
uniform. This means that the comparison work will become
unbalanced and, in the worst case where one process is responsible for
a majority of the list, approach the level for a sequential algorithm.

@ Of course, once the list elements have all been collected in the proper
processes, they must still be sorted using a sequential sort.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 24 /34

Parallel Quicksort Communication Cost

@ As already noted, there are log, p steps required to rearrange the list
elements between the processes. Each step consists of broadcasting
the pivot and exchanging half the list data (on average).

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 25/34

Parallel Quicksort Communication Cost

@ As already noted, there are log, p steps required to rearrange the list
elements between the processes. Each step consists of broadcasting
the pivot and exchanging half the list data (on average).

@ The communication cost for each broadcast is

tbroadcast = tstartup +1- tdata

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 25/34

Parallel Quicksort Communication Cost

@ As already noted, there are log, p steps required to rearrange the list
elements between the processes. Each step consists of broadcasting
the pivot and exchanging half the list data (on average).

@ The communication cost for each broadcast is

tbroadcast = tstartup +1- tdata

@ The average communication cost for the data exchanges is

1n n
texchange =2 <tstartup + 2ptdata> = 2tstartup + ;tdata

(This assumes that send/receive operations are not overlapped.)

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 25/34

Parallel Quicksort Communication Cost

@ As already noted, there are log, p steps required to rearrange the list
elements between the processes. Each step consists of broadcasting
the pivot and exchanging half the list data (on average).

@ The communication cost for each broadcast is

tbroadcast = tstartup +1- tdata

@ The average communication cost for the data exchanges is

1n n
texchange =2 <tstartup + 2ptdata> = 2tstartup + ;tdata

(This assumes that send/receive operations are not overlapped.)
@ Summing these two costs we find the communication cost per step is

n
tcomm per step — throadcast 1 texchange = 3tstartup + (1 + P) tdata-

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 25/34

Parallel Quicksort Communication Cost

@ Since there are log, p steps, the total communication cost for all steps
is

n
tiotal comm = |:3tstartup + <1 + P> tdata:| |Og2 p-

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 26 /34

Parallel Quicksort Communication Cost

@ Since there are log, p steps, the total communication cost for all steps
is

n
tiotal comm = |:3tstartup + <1 + P> tdata:| |Og2 p-

@ As already mentioned, however, the average sublist size in each
process can vary dramatically as the algorithm proceeds, meaning this
analysis may not apply to the typical case.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 26 /34

Outline

© Parallel Sorting

@ Parallel Sample Sort

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 27 /34

Seeking a More Balanced Workload

@ The main problem with the parallel Quicksort lies in the choice of the
pivot.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 28 /34

Seeking a More Balanced Workload

@ The main problem with the parallel Quicksort lies in the choice of the
pivot.

@ The Sample Sort and its relatives seek to mitigate this problem by
choosing p — 1 values, called splitters, that are used to partition the
data into p parts, one for each process.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 28 /34

Seeking a More Balanced Workload

@ The main problem with the parallel Quicksort lies in the choice of the
pivot.
@ The Sample Sort and its relatives seek to mitigate this problem by

choosing p — 1 values, called splitters, that are used to partition the
data into p parts, one for each process.

@ Basic Algorithm

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 28 /34

Seeking a More Balanced Workload

@ The main problem with the parallel Quicksort lies in the choice of the
pivot.
@ The Sample Sort and its relatives seek to mitigate this problem by

choosing p — 1 values, called splitters, that are used to partition the
data into p parts, one for each process.

@ Basic Algorithm
@ Each process sorts its original portion of the list.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 28 /34

Seeking a More Balanced Workload

@ The main problem with the parallel Quicksort lies in the choice of the
pivot.
@ The Sample Sort and its relatives seek to mitigate this problem by

choosing p — 1 values, called splitters, that are used to partition the
data into p parts, one for each process.

@ Basic Algorithm

@ Each process sorts its original portion of the list.
@ Splitters are chosen and distributed.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 28/34

Seeking a More Balanced Workload

@ The main problem with the parallel Quicksort lies in the choice of the
pivot.

@ The Sample Sort and its relatives seek to mitigate this problem by
choosing p — 1 values, called splitters, that are used to partition the
data into p parts, one for each process.

@ Basic Algorithm

@ Each process sorts its original portion of the list.

@ Splitters are chosen and distributed.

© Each process partitions its sorted data using the splitters and
exchanges data with other processes.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 28/34

Seeking a More Balanced Workload

@ The main problem with the parallel Quicksort lies in the choice of the
pivot.

@ The Sample Sort and its relatives seek to mitigate this problem by
choosing p — 1 values, called splitters, that are used to partition the
data into p parts, one for each process.

@ Basic Algorithm

@ Each process sorts its original portion of the list.

@ Splitters are chosen and distributed.

© Each process partitions its sorted data using the splitters and
exchanges data with other processes.

© Each process sorts its final portion of the list.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 28/34

Selecting Splitters for the Sample Sort

@ The name “Sample Sort” comes from the fact that splitters are
determined using a random sample from each process’ sublist.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 29/34

Selecting Splitters for the Sample Sort

@ The name “Sample Sort” comes from the fact that splitters are
determined using a random sample from each process’ sublist.

@ Each process collects some number s, often 32 or 64, of samples from
its portion of the original list data.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 29/34

Selecting Splitters for the Sample Sort

@ The name “Sample Sort” comes from the fact that splitters are
determined using a random sample from each process’ sublist.

@ Each process collects some number s, often 32 or 64, of samples from
its portion of the original list data.

@ One process gathers all s - p samples and produces a sorted list.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 29/34

Selecting Splitters for the Sample Sort

@ The name “Sample Sort” comes from the fact that splitters are
determined using a random sample from each process’ sublist.

@ Each process collects some number s, often 32 or 64, of samples from
its portion of the original list data.

@ One process gathers all s - p samples and produces a sorted list.

@ The p — 1 splitters are then found in this list at locations
1s,25,3s,...,(p—1)s.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 29/34

Selecting Splitters for the Sample Sort

@ The name “Sample Sort” comes from the fact that splitters are
determined using a random sample from each process’ sublist.

@ Each process collects some number s, often 32 or 64, of samples from
its portion of the original list data.

@ One process gathers all s - p samples and produces a sorted list.

@ The p — 1 splitters are then found in this list at locations
1s,25,3s,...,(p—1)s.

@ The splitters are then broadcast to all processes.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 29/34

Selecting Splitters for the Sample Sort

@ The name “Sample Sort” comes from the fact that splitters are
determined using a random sample from each process’ sublist.

@ Each process collects some number s, often 32 or 64, of samples from
its portion of the original list data.

@ One process gathers all s - p samples and produces a sorted list.

@ The p — 1 splitters are then found in this list at locations
1s,25,3s,...,(p—1)s.

@ The splitters are then broadcast to all processes.

@ One potential complication is that splitters must be unique; elements
in the original list can be “tagged” in some way so that list can be
uniquely ordered.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 29/34

Sample Sort Example

@ Original list distributed on two processors (p = 2)

[1][6][15][7][10][5][9][3]

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 30/34

Sample Sort Example

@ Original list distributed on two processors (p = 2)

[1][6][15][7][10][5][9][3]

@ Each process sorts its portion of the list

[1][3][5][6][7][9][10][15]

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 30/34

Sample Sort Example

@ Original list distributed on two processors (p = 2)

[1][6][15][7][10][5][9][3]

@ Each process sorts its portion of the list

[1][3][5][6][7][9][10][15]

e Two random samples (s = 2) are chosen in by each process

[1][3][5][6][7][9][10][15]

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 30/34

Sample Sort Example

@ Original list distributed on two processors (p = 2)

[1][6][15][7][10][5][9][3]

@ Each process sorts its portion of the list

[1][3][5][6][7][9][10][15]

e Two random samples (s = 2) are chosen in by each process

[1][3][5][6][7][9][10][15]

@ Samples are collected on single processor

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 30/34

Sample Sort Example

@ Original list distributed on two processors (p = 2)

[1][6][15][7][10][5][9][3]

@ Each process sorts its portion of the list

[1][3][5][6][7][9][10][15]

e Two random samples (s = 2) are chosen in by each process

[1][3][5][6][7][9][10][15]

@ Samples are collected on single processor

@ Samples are then sorted

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 30/34

Sample Sort Example (continued)

The sorted samples:

@ Since there are only two processes, there is only one splitter, which is
located at position 1s. As s = 2, the single element splitter list
contains only the element 10.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 31/34

Sample Sort Example (continued)

The sorted samples:

@ Since there are only two processes, there is only one splitter, which is
located at position 1s. As s = 2, the single element splitter list
contains only the element 10.

@ The splitter list is broadcast to the processes, who then partition their
data.

[1][3][s][6][7][o][10][15]

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 31/34

Sample Sort Example (continued)

The sorted samples:

@ Since there are only two processes, there is only one splitter, which is
located at position 1s. As s = 2, the single element splitter list
contains only the element 10.

@ The splitter list is broadcast to the processes, who then partition their
data.

[1][3][s][6][7][o][10][15]

@ Processes exchange partitioned data

[2]14][8][1][3][5][6][7]19]

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 31/34

Sample Sort Example (continued)

The sorted samples:

@ Since there are only two processes, there is only one splitter, which is
located at position 1s. As s = 2, the single element splitter list
contains only the element 10.

@ The splitter list is broadcast to the processes, who then partition their
data.

[1][3][s][6][7][o][10][15]

@ Processes exchange partitioned data

[2]14][8][1][3][5][6][7]19]

o Finally, each process sequentially sorts its portion of the list.
[11[2][3][4][5][6][7][8][9]

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 31/34

Discussion of Sample Sort

@ Each process must carry out two sequential sorts

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 32/34

Discussion of Sample Sort

@ Each process must carry out two sequential sorts

@ One process must collect samples sort them, choose splitters, and
broadcast the splitters.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 32/34

Discussion of Sample Sort

@ Each process must carry out two sequential sorts

@ One process must collect samples sort them, choose splitters, and
broadcast the splitters.

@ Most literature suggests that the Radix Sort be used for the
sequential sorts; Quicksort can also be used.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 32/34

Discussion of Sample Sort

@ Each process must carry out two sequential sorts

@ One process must collect samples sort them, choose splitters, and
broadcast the splitters.

@ Most literature suggests that the Radix Sort be used for the
sequential sorts; Quicksort can also be used.

@ As our example illustrates, it is often the case that the sorting
operation will end with an imbalance in distribution of the sorted list.
Usually this will be smaller than with the parallel Quicksort.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 32/34

Discussion of Sample Sort

@ Each process must carry out two sequential sorts

@ One process must collect samples sort them, choose splitters, and
broadcast the splitters.

@ Most literature suggests that the Radix Sort be used for the
sequential sorts; Quicksort can also be used.

@ As our example illustrates, it is often the case that the sorting
operation will end with an imbalance in distribution of the sorted list.
Usually this will be smaller than with the parallel Quicksort.

@ The number of splitters s can impact the performance of the
algorithm; in general smaller s values lead to greater load imbalances.
As s increases the sequential work to determine the splitters increases.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 32/34

Discussion of Sample Sort

@ Each process must carry out two sequential sorts

@ One process must collect samples sort them, choose splitters, and
broadcast the splitters.

@ Most literature suggests that the Radix Sort be used for the
sequential sorts; Quicksort can also be used.

@ As our example illustrates, it is often the case that the sorting
operation will end with an imbalance in distribution of the sorted list.
Usually this will be smaller than with the parallel Quicksort.

@ The number of splitters s can impact the performance of the
algorithm; in general smaller s values lead to greater load imbalances.
As s increases the sequential work to determine the splitters increases.

@ During the data exchange, processes must be prepared to accept an
unknown amount of data. To accommodate this we can use an
additional global communication (e.g. using MPI_Allgather()) to
distribute the partition sizes each process is preparing to send.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 32/34

© Parallel Sorting

o Parallel Sorting by Regular Sampling (PSRS)

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 33/34

Parallel Sorting by Regular Sampling (PSRS)

@ Rather than using a random sample to determine the splitters, the
PSRS selects specific elements of the locally sorted list as samples.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 34 /34

Parallel Sorting by Regular Sampling (PSRS)

@ Rather than using a random sample to determine the splitters, the
PSRS selects specific elements of the locally sorted list as samples.

@ The phrase “regular sampling” implies that the elements are selected
at regular intervals in the local list.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 34 /34

Parallel Sorting by Regular Sampling (PSRS)

@ Rather than using a random sample to determine the splitters, the
PSRS selects specific elements of the locally sorted list as samples.

@ The phrase “regular sampling” implies that the elements are selected
at regular intervals in the local list.

@ Since each locally sorted list has roughly n/p elements, choosing p
regularly spaced samples can be done by selecting samples with indices

(22). G2 (552
‘\p p)’\p p) T P P

which reduces to

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 34 /34

	Overview of Sorting
	Sorting Characteristics
	Bubble Sort
	Quicksort
	Mergesort

	Parallel Sorting
	Assumptions
	Parallel Quicksort
	Parallel Sample Sort
	Parallel Sorting by Regular Sampling (PSRS)

