
Parallel Sorting

CPS343

Parallel and High Performance Computing

Spring 2020

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 1 / 34



Outline

1 Overview of Sorting
Sorting Characteristics
Bubble Sort
Quicksort
Mergesort

2 Parallel Sorting
Assumptions
Parallel Quicksort
Parallel Sample Sort
Parallel Sorting by Regular Sampling (PSRS)

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 2 / 34



Outline

1 Overview of Sorting
Sorting Characteristics
Bubble Sort
Quicksort
Mergesort

2 Parallel Sorting
Assumptions
Parallel Quicksort
Parallel Sample Sort
Parallel Sorting by Regular Sampling (PSRS)

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 3 / 34



Sorting Terms

Sorting involves rearranging records into some specified order.

The key is used to determine the order; typically we sort so that they
keys are in nondecreasing order. If ai is the key for the i th record,
then after the sort ai ≤ aj if i < j .

The other data in the record is called satellite data.

If the entire sorting operation can be carried out using main memory,
the sort is called an internal sort.

If the data set is too large for this, then must use an external sort.

A sorting algorithm is called in place if no additional memory is
required for the sort. (Well, a small amount of additional memory
may be required, but the amount is not a function of the size of the
list to be sorted.)

A sorting algorithm is called stable if the relative order of elements
with equal keys is unchanged by the sorting algorithm.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 4 / 34



Sorting Terms

Sorting involves rearranging records into some specified order.

The key is used to determine the order; typically we sort so that they
keys are in nondecreasing order. If ai is the key for the i th record,
then after the sort ai ≤ aj if i < j .

The other data in the record is called satellite data.

If the entire sorting operation can be carried out using main memory,
the sort is called an internal sort.

If the data set is too large for this, then must use an external sort.

A sorting algorithm is called in place if no additional memory is
required for the sort. (Well, a small amount of additional memory
may be required, but the amount is not a function of the size of the
list to be sorted.)

A sorting algorithm is called stable if the relative order of elements
with equal keys is unchanged by the sorting algorithm.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 4 / 34



Sorting Terms

Sorting involves rearranging records into some specified order.

The key is used to determine the order; typically we sort so that they
keys are in nondecreasing order. If ai is the key for the i th record,
then after the sort ai ≤ aj if i < j .

The other data in the record is called satellite data.

If the entire sorting operation can be carried out using main memory,
the sort is called an internal sort.

If the data set is too large for this, then must use an external sort.

A sorting algorithm is called in place if no additional memory is
required for the sort. (Well, a small amount of additional memory
may be required, but the amount is not a function of the size of the
list to be sorted.)

A sorting algorithm is called stable if the relative order of elements
with equal keys is unchanged by the sorting algorithm.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 4 / 34



Sorting Terms

Sorting involves rearranging records into some specified order.

The key is used to determine the order; typically we sort so that they
keys are in nondecreasing order. If ai is the key for the i th record,
then after the sort ai ≤ aj if i < j .

The other data in the record is called satellite data.

If the entire sorting operation can be carried out using main memory,
the sort is called an internal sort.

If the data set is too large for this, then must use an external sort.

A sorting algorithm is called in place if no additional memory is
required for the sort. (Well, a small amount of additional memory
may be required, but the amount is not a function of the size of the
list to be sorted.)

A sorting algorithm is called stable if the relative order of elements
with equal keys is unchanged by the sorting algorithm.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 4 / 34



Sorting Terms

Sorting involves rearranging records into some specified order.

The key is used to determine the order; typically we sort so that they
keys are in nondecreasing order. If ai is the key for the i th record,
then after the sort ai ≤ aj if i < j .

The other data in the record is called satellite data.

If the entire sorting operation can be carried out using main memory,
the sort is called an internal sort.

If the data set is too large for this, then must use an external sort.

A sorting algorithm is called in place if no additional memory is
required for the sort. (Well, a small amount of additional memory
may be required, but the amount is not a function of the size of the
list to be sorted.)

A sorting algorithm is called stable if the relative order of elements
with equal keys is unchanged by the sorting algorithm.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 4 / 34



Sorting Terms

Sorting involves rearranging records into some specified order.

The key is used to determine the order; typically we sort so that they
keys are in nondecreasing order. If ai is the key for the i th record,
then after the sort ai ≤ aj if i < j .

The other data in the record is called satellite data.

If the entire sorting operation can be carried out using main memory,
the sort is called an internal sort.

If the data set is too large for this, then must use an external sort.

A sorting algorithm is called in place if no additional memory is
required for the sort. (Well, a small amount of additional memory
may be required, but the amount is not a function of the size of the
list to be sorted.)

A sorting algorithm is called stable if the relative order of elements
with equal keys is unchanged by the sorting algorithm.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 4 / 34



Sorting Terms

Sorting involves rearranging records into some specified order.

The key is used to determine the order; typically we sort so that they
keys are in nondecreasing order. If ai is the key for the i th record,
then after the sort ai ≤ aj if i < j .

The other data in the record is called satellite data.

If the entire sorting operation can be carried out using main memory,
the sort is called an internal sort.

If the data set is too large for this, then must use an external sort.

A sorting algorithm is called in place if no additional memory is
required for the sort. (Well, a small amount of additional memory
may be required, but the amount is not a function of the size of the
list to be sorted.)

A sorting algorithm is called stable if the relative order of elements
with equal keys is unchanged by the sorting algorithm.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 4 / 34



Compare and Exchange

A basic operation in many sorting algorithms is compare and exchange

Suppose we’re trying to sort a list in increasing order. The key
operation (assuming i < j) is

if ai > aj then
t = ai
ai = aj
aj = t

endif

This operation is called a swap and is written swap(x ,y)

An example that uses this approach is the bubble sort

Other sorts (e.g. mergesort) do not have compare and exchange as a
basic operation.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 5 / 34



Compare and Exchange

A basic operation in many sorting algorithms is compare and exchange

Suppose we’re trying to sort a list in increasing order. The key
operation (assuming i < j) is

if ai > aj then
t = ai
ai = aj
aj = t

endif

This operation is called a swap and is written swap(x ,y)

An example that uses this approach is the bubble sort

Other sorts (e.g. mergesort) do not have compare and exchange as a
basic operation.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 5 / 34



Compare and Exchange

A basic operation in many sorting algorithms is compare and exchange

Suppose we’re trying to sort a list in increasing order. The key
operation (assuming i < j) is

if ai > aj then
t = ai
ai = aj
aj = t

endif

This operation is called a swap and is written swap(x ,y)

An example that uses this approach is the bubble sort

Other sorts (e.g. mergesort) do not have compare and exchange as a
basic operation.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 5 / 34



Compare and Exchange

A basic operation in many sorting algorithms is compare and exchange

Suppose we’re trying to sort a list in increasing order. The key
operation (assuming i < j) is

if ai > aj then
t = ai
ai = aj
aj = t

endif

This operation is called a swap and is written swap(x ,y)

An example that uses this approach is the bubble sort

Other sorts (e.g. mergesort) do not have compare and exchange as a
basic operation.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 5 / 34



Compare and Exchange

A basic operation in many sorting algorithms is compare and exchange

Suppose we’re trying to sort a list in increasing order. The key
operation (assuming i < j) is

if ai > aj then
t = ai
ai = aj
aj = t

endif

This operation is called a swap and is written swap(x ,y)

An example that uses this approach is the bubble sort

Other sorts (e.g. mergesort) do not have compare and exchange as a
basic operation.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 5 / 34



Outline

1 Overview of Sorting
Sorting Characteristics
Bubble Sort
Quicksort
Mergesort

2 Parallel Sorting
Assumptions
Parallel Quicksort
Parallel Sample Sort
Parallel Sorting by Regular Sampling (PSRS)

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 6 / 34



Bubble Sort

The Bubble sort gets its name from the way smaller list elements
“bubble” up in the list throughout the sort

Given an n element list of integers ai , i = 0, 1, . . . , n − 1:

done = false
last = n − 2
while not done do

done = true
for i = 0 to last do

if ai > ai+1 then
done = false
swap(ai ,ai+1)

endif
endfor
last = last − 1

endwhile

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 7 / 34



Bubble Sort

The Bubble sort gets its name from the way smaller list elements
“bubble” up in the list throughout the sort

Given an n element list of integers ai , i = 0, 1, . . . , n − 1:

done = false
last = n − 2
while not done do

done = true
for i = 0 to last do

if ai > ai+1 then
done = false
swap(ai ,ai+1)

endif
endfor
last = last − 1

endwhile

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 7 / 34



Bubble Sort

For example, consider the bubble sort applied to a list of eight numbers.
The number in bold in each column represents ai and is compared with
the next number in the list.

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

2

7

8

4

1

3

6

5

2

7

8

4

1

3

6

5

2

7

4

8

1

3

6

5

2

7

4

1

8

3

6

5

2

7

4

1

3

8

6

5

2

7

4

1

3

6

8

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 8 / 34



Bubble Sort

For example, consider the bubble sort applied to a list of eight numbers.
The number in bold in each column represents ai and is compared with
the next number in the list.

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

2

7

8

4

1

3

6

5

2

7

8

4

1

3

6

5

2

7

4

8

1

3

6

5

2

7

4

1

8

3

6

5

2

7

4

1

3

8

6

5

2

7

4

1

3

6

8

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 8 / 34



Bubble Sort

For example, consider the bubble sort applied to a list of eight numbers.
The number in bold in each column represents ai and is compared with
the next number in the list.

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

2

7

8

4

1

3

6

5

2

7

8

4

1

3

6

5

2

7

4

8

1

3

6

5

2

7

4

1

8

3

6

5

2

7

4

1

3

8

6

5

2

7

4

1

3

6

8

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 8 / 34



Bubble Sort

For example, consider the bubble sort applied to a list of eight numbers.
The number in bold in each column represents ai and is compared with
the next number in the list.

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

2

7

8

4

1

3

6

5

2

7

8

4

1

3

6

5

2

7

4

8

1

3

6

5

2

7

4

1

8

3

6

5

2

7

4

1

3

8

6

5

2

7

4

1

3

6

8

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 8 / 34



Bubble Sort

For example, consider the bubble sort applied to a list of eight numbers.
The number in bold in each column represents ai and is compared with
the next number in the list.

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

2

7

8

4

1

3

6

5

2

7

8

4

1

3

6

5

2

7

4

8

1

3

6

5

2

7

4

1

8

3

6

5

2

7

4

1

3

8

6

5

2

7

4

1

3

6

8

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 8 / 34



Bubble Sort

For example, consider the bubble sort applied to a list of eight numbers.
The number in bold in each column represents ai and is compared with
the next number in the list.

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

2

7

8

4

1

3

6

5

2

7

8

4

1

3

6

5

2

7

4

8

1

3

6

5

2

7

4

1

8

3

6

5

2

7

4

1

3

8

6

5

2

7

4

1

3

6

8

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 8 / 34



Bubble Sort

For example, consider the bubble sort applied to a list of eight numbers.
The number in bold in each column represents ai and is compared with
the next number in the list.

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

2

7

8

4

1

3

6

5

2

7

8

4

1

3

6

5

2

7

4

8

1

3

6

5

2

7

4

1

8

3

6

5

2

7

4

1

3

8

6

5

2

7

4

1

3

6

8

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 8 / 34



Bubble Sort

For example, consider the bubble sort applied to a list of eight numbers.
The number in bold in each column represents ai and is compared with
the next number in the list.

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

2

7

8

4

1

3

6

5

2

7

8

4

1

3

6

5

2

7

4

8

1

3

6

5

2

7

4

1

8

3

6

5

2

7

4

1

3

8

6

5

2

7

4

1

3

6

8

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 8 / 34



Bubble Sort

The second sweep looks like

5

2

7

4

1

3

6

8

2

5

7

4

1

3

6

8

2

5

7

4

1

3

6

8

2

5

4

7

1

3

6

8

2

5

4

1

7

3

6

8

2

5

4

1

3

7

6

8

2

5

4

1

3

6

7

8

Notice that we have one fewer comparison since the largest element in the
list is already at the bottom.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 9 / 34



Bubble Sort

The second sweep looks like

5

2

7

4

1

3

6

8

2

5

7

4

1

3

6

8

2

5

7

4

1

3

6

8

2

5

4

7

1

3

6

8

2

5

4

1

7

3

6

8

2

5

4

1

3

7

6

8

2

5

4

1

3

6

7

8

Notice that we have one fewer comparison since the largest element in the
list is already at the bottom.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 9 / 34



Bubble Sort

The second sweep looks like

5

2

7

4

1

3

6

8

2

5

7

4

1

3

6

8

2

5

7

4

1

3

6

8

2

5

4

7

1

3

6

8

2

5

4

1

7

3

6

8

2

5

4

1

3

7

6

8

2

5

4

1

3

6

7

8

Notice that we have one fewer comparison since the largest element in the
list is already at the bottom.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 9 / 34



Bubble Sort

The second sweep looks like

5

2

7

4

1

3

6

8

2

5

7

4

1

3

6

8

2

5

7

4

1

3

6

8

2

5

4

7

1

3

6

8

2

5

4

1

7

3

6

8

2

5

4

1

3

7

6

8

2

5

4

1

3

6

7

8

Notice that we have one fewer comparison since the largest element in the
list is already at the bottom.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 9 / 34



Bubble Sort

The second sweep looks like

5

2

7

4

1

3

6

8

2

5

7

4

1

3

6

8

2

5

7

4

1

3

6

8

2

5

4

7

1

3

6

8

2

5

4

1

7

3

6

8

2

5

4

1

3

7

6

8

2

5

4

1

3

6

7

8

Notice that we have one fewer comparison since the largest element in the
list is already at the bottom.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 9 / 34



Bubble Sort

The second sweep looks like

5

2

7

4

1

3

6

8

2

5

7

4

1

3

6

8

2

5

7

4

1

3

6

8

2

5

4

7

1

3

6

8

2

5

4

1

7

3

6

8

2

5

4

1

3

7

6

8

2

5

4

1

3

6

7

8

Notice that we have one fewer comparison since the largest element in the
list is already at the bottom.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 9 / 34



Bubble Sort

The second sweep looks like

5

2

7

4

1

3

6

8

2

5

7

4

1

3

6

8

2

5

7

4

1

3

6

8

2

5

4

7

1

3

6

8

2

5

4

1

7

3

6

8

2

5

4

1

3

7

6

8

2

5

4

1

3

6

7

8

Notice that we have one fewer comparison since the largest element in the
list is already at the bottom.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 9 / 34



Bubble Sort

The second sweep looks like

5

2

7

4

1

3

6

8

2

5

7

4

1

3

6

8

2

5

7

4

1

3

6

8

2

5

4

7

1

3

6

8

2

5

4

1

7

3

6

8

2

5

4

1

3

7

6

8

2

5

4

1

3

6

7

8

Notice that we have one fewer comparison since the largest element in the
list is already at the bottom.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 9 / 34



Bubble Sort

The third sweep looks like

2

5

4

1

3

6

7

8

2

5

4

1

3

6

7

8

2

4

5

1

3

6

7

8

2

4

1

5

3

6

7

8

2

4

1

3

5

6

7

8

2

4

1

3

5

6

7

8

Now the last three elements are all in place. After four more sweeps the
list will be sorted.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 10 / 34



Bubble Sort

The third sweep looks like

2

5

4

1

3

6

7

8

2

5

4

1

3

6

7

8

2

4

5

1

3

6

7

8

2

4

1

5

3

6

7

8

2

4

1

3

5

6

7

8

2

4

1

3

5

6

7

8

Now the last three elements are all in place. After four more sweeps the
list will be sorted.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 10 / 34



Bubble Sort

The third sweep looks like

2

5

4

1

3

6

7

8

2

5

4

1

3

6

7

8

2

4

5

1

3

6

7

8

2

4

1

5

3

6

7

8

2

4

1

3

5

6

7

8

2

4

1

3

5

6

7

8

Now the last three elements are all in place. After four more sweeps the
list will be sorted.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 10 / 34



Bubble Sort

The third sweep looks like

2

5

4

1

3

6

7

8

2

5

4

1

3

6

7

8

2

4

5

1

3

6

7

8

2

4

1

5

3

6

7

8

2

4

1

3

5

6

7

8

2

4

1

3

5

6

7

8

Now the last three elements are all in place. After four more sweeps the
list will be sorted.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 10 / 34



Bubble Sort

The third sweep looks like

2

5

4

1

3

6

7

8

2

5

4

1

3

6

7

8

2

4

5

1

3

6

7

8

2

4

1

5

3

6

7

8

2

4

1

3

5

6

7

8

2

4

1

3

5

6

7

8

Now the last three elements are all in place. After four more sweeps the
list will be sorted.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 10 / 34



Bubble Sort

The third sweep looks like

2

5

4

1

3

6

7

8

2

5

4

1

3

6

7

8

2

4

5

1

3

6

7

8

2

4

1

5

3

6

7

8

2

4

1

3

5

6

7

8

2

4

1

3

5

6

7

8

Now the last three elements are all in place. After four more sweeps the
list will be sorted.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 10 / 34



Bubble Sort

The third sweep looks like

2

5

4

1

3

6

7

8

2

5

4

1

3

6

7

8

2

4

5

1

3

6

7

8

2

4

1

5

3

6

7

8

2

4

1

3

5

6

7

8

2

4

1

3

5

6

7

8

Now the last three elements are all in place. After four more sweeps the
list will be sorted.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 10 / 34



Bubble Sort

Although simple in concept, the bubble sort is not very efficient.

In the worst case the outer loop is done n − 1 times.

The first time through the inner loop body is executed n − 1 times.

Each subsequent time the inner loop body is executed one fewer time.

This means that in the worst case the number comparisons is
(n − 1) + (n − 2) + · · ·+ 2 + 1 = n(n − 1)/2 which is O(n2).

The number of comparisons in the average case is also O(n2).

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 11 / 34



Bubble Sort

Although simple in concept, the bubble sort is not very efficient.

In the worst case the outer loop is done n − 1 times.

The first time through the inner loop body is executed n − 1 times.

Each subsequent time the inner loop body is executed one fewer time.

This means that in the worst case the number comparisons is
(n − 1) + (n − 2) + · · ·+ 2 + 1 = n(n − 1)/2 which is O(n2).

The number of comparisons in the average case is also O(n2).

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 11 / 34



Bubble Sort

Although simple in concept, the bubble sort is not very efficient.

In the worst case the outer loop is done n − 1 times.

The first time through the inner loop body is executed n − 1 times.

Each subsequent time the inner loop body is executed one fewer time.

This means that in the worst case the number comparisons is
(n − 1) + (n − 2) + · · ·+ 2 + 1 = n(n − 1)/2 which is O(n2).

The number of comparisons in the average case is also O(n2).

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 11 / 34



Bubble Sort

Although simple in concept, the bubble sort is not very efficient.

In the worst case the outer loop is done n − 1 times.

The first time through the inner loop body is executed n − 1 times.

Each subsequent time the inner loop body is executed one fewer time.

This means that in the worst case the number comparisons is
(n − 1) + (n − 2) + · · ·+ 2 + 1 = n(n − 1)/2 which is O(n2).

The number of comparisons in the average case is also O(n2).

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 11 / 34



Bubble Sort

Although simple in concept, the bubble sort is not very efficient.

In the worst case the outer loop is done n − 1 times.

The first time through the inner loop body is executed n − 1 times.

Each subsequent time the inner loop body is executed one fewer time.

This means that in the worst case the number comparisons is
(n − 1) + (n − 2) + · · ·+ 2 + 1 = n(n − 1)/2 which is O(n2).

The number of comparisons in the average case is also O(n2).

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 11 / 34



Bubble Sort

Although simple in concept, the bubble sort is not very efficient.

In the worst case the outer loop is done n − 1 times.

The first time through the inner loop body is executed n − 1 times.

Each subsequent time the inner loop body is executed one fewer time.

This means that in the worst case the number comparisons is
(n − 1) + (n − 2) + · · ·+ 2 + 1 = n(n − 1)/2 which is O(n2).

The number of comparisons in the average case is also O(n2).

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 11 / 34



Outline

1 Overview of Sorting
Sorting Characteristics
Bubble Sort
Quicksort
Mergesort

2 Parallel Sorting
Assumptions
Parallel Quicksort
Parallel Sample Sort
Parallel Sorting by Regular Sampling (PSRS)

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 12 / 34



Quicksort

Uses divide and conquer strategy.

Given a list of n elements, choose one element as a pivot.

Reorder list so all elements smaller than the pivot come before it and
all elements larger than the pivot come after it.

Pivot is now in its proper place and the list has been partitioned into
two sublists that must still be sorted.

Quicksort is naturally recursive.

Average number of comparisons is O(n log n).

Worst case number of comparisons is O(n2).

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 13 / 34



Quicksort

Uses divide and conquer strategy.

Given a list of n elements, choose one element as a pivot.

Reorder list so all elements smaller than the pivot come before it and
all elements larger than the pivot come after it.

Pivot is now in its proper place and the list has been partitioned into
two sublists that must still be sorted.

Quicksort is naturally recursive.

Average number of comparisons is O(n log n).

Worst case number of comparisons is O(n2).

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 13 / 34



Quicksort

Uses divide and conquer strategy.

Given a list of n elements, choose one element as a pivot.

Reorder list so all elements smaller than the pivot come before it and
all elements larger than the pivot come after it.

Pivot is now in its proper place and the list has been partitioned into
two sublists that must still be sorted.

Quicksort is naturally recursive.

Average number of comparisons is O(n log n).

Worst case number of comparisons is O(n2).

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 13 / 34



Quicksort

Uses divide and conquer strategy.

Given a list of n elements, choose one element as a pivot.

Reorder list so all elements smaller than the pivot come before it and
all elements larger than the pivot come after it.

Pivot is now in its proper place and the list has been partitioned into
two sublists that must still be sorted.

Quicksort is naturally recursive.

Average number of comparisons is O(n log n).

Worst case number of comparisons is O(n2).

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 13 / 34



Quicksort

Uses divide and conquer strategy.

Given a list of n elements, choose one element as a pivot.

Reorder list so all elements smaller than the pivot come before it and
all elements larger than the pivot come after it.

Pivot is now in its proper place and the list has been partitioned into
two sublists that must still be sorted.

Quicksort is naturally recursive.

Average number of comparisons is O(n log n).

Worst case number of comparisons is O(n2).

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 13 / 34



Quicksort

Uses divide and conquer strategy.

Given a list of n elements, choose one element as a pivot.

Reorder list so all elements smaller than the pivot come before it and
all elements larger than the pivot come after it.

Pivot is now in its proper place and the list has been partitioned into
two sublists that must still be sorted.

Quicksort is naturally recursive.

Average number of comparisons is O(n log n).

Worst case number of comparisons is O(n2).

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 13 / 34



Quicksort

Uses divide and conquer strategy.

Given a list of n elements, choose one element as a pivot.

Reorder list so all elements smaller than the pivot come before it and
all elements larger than the pivot come after it.

Pivot is now in its proper place and the list has been partitioned into
two sublists that must still be sorted.

Quicksort is naturally recursive.

Average number of comparisons is O(n log n).

Worst case number of comparisons is O(n2).

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 13 / 34



Quicksort

Often the first element in the list is used as the pivot, although other
mechanisms can be used. Ideally pivot is median of sorted list.

Here red indicates the selected pivot and elements in blue are previous
pivots that now partition the list.

5

7

2

8

4

1

3

6

2

4

1

3

5

7

8

6

2

4

1

3

5

7

8

6

1

2

4

3

5

6

7

8

1

2

4

3

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 14 / 34



Quicksort

Often the first element in the list is used as the pivot, although other
mechanisms can be used. Ideally pivot is median of sorted list.

Here red indicates the selected pivot and elements in blue are previous
pivots that now partition the list.

5

7

2

8

4

1

3

6

2

4

1

3

5

7

8

6

2

4

1

3

5

7

8

6

1

2

4

3

5

6

7

8

1

2

4

3

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 14 / 34



Quicksort

Often the first element in the list is used as the pivot, although other
mechanisms can be used. Ideally pivot is median of sorted list.

Here red indicates the selected pivot and elements in blue are previous
pivots that now partition the list.

5

7

2

8

4

1

3

6

2

4

1

3

5

7

8

6

2

4

1

3

5

7

8

6

1

2

4

3

5

6

7

8

1

2

4

3

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 14 / 34



Quicksort

Often the first element in the list is used as the pivot, although other
mechanisms can be used. Ideally pivot is median of sorted list.

Here red indicates the selected pivot and elements in blue are previous
pivots that now partition the list.

5

7

2

8

4

1

3

6

2

4

1

3

5

7

8

6

2

4

1

3

5

7

8

6

1

2

4

3

5

6

7

8

1

2

4

3

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 14 / 34



Quicksort

Often the first element in the list is used as the pivot, although other
mechanisms can be used. Ideally pivot is median of sorted list.

Here red indicates the selected pivot and elements in blue are previous
pivots that now partition the list.

5

7

2

8

4

1

3

6

2

4

1

3

5

7

8

6

2

4

1

3

5

7

8

6

1

2

4

3

5

6

7

8

1

2

4

3

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 14 / 34



Quicksort

Often the first element in the list is used as the pivot, although other
mechanisms can be used. Ideally pivot is median of sorted list.

Here red indicates the selected pivot and elements in blue are previous
pivots that now partition the list.

5

7

2

8

4

1

3

6

2

4

1

3

5

7

8

6

2

4

1

3

5

7

8

6

1

2

4

3

5

6

7

8

1

2

4

3

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 14 / 34



Quicksort

Often the first element in the list is used as the pivot, although other
mechanisms can be used. Ideally pivot is median of sorted list.

Here red indicates the selected pivot and elements in blue are previous
pivots that now partition the list.

5

7

2

8

4

1

3

6

2

4

1

3

5

7

8

6

2

4

1

3

5

7

8

6

1

2

4

3

5

6

7

8

1

2

4

3

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 14 / 34



Outline

1 Overview of Sorting
Sorting Characteristics
Bubble Sort
Quicksort
Mergesort

2 Parallel Sorting
Assumptions
Parallel Quicksort
Parallel Sample Sort
Parallel Sorting by Regular Sampling (PSRS)

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 15 / 34



Mergesort

Like Quicksort, Mergesort uses a divide and conquer strategy, and is
naturally recursive.

Basic algorithm:

1 if list length is 0 or 1 then return.
2 partition list into two sublists of (nearly) equal size.
3 sort each sublist using mergesort.
4 merge both sublists into one sorted list.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 16 / 34



Mergesort

Like Quicksort, Mergesort uses a divide and conquer strategy, and is
naturally recursive.

Basic algorithm:

1 if list length is 0 or 1 then return.
2 partition list into two sublists of (nearly) equal size.
3 sort each sublist using mergesort.
4 merge both sublists into one sorted list.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 16 / 34



Mergesort

Like Quicksort, Mergesort uses a divide and conquer strategy, and is
naturally recursive.

Basic algorithm:
1 if list length is 0 or 1 then return.

2 partition list into two sublists of (nearly) equal size.
3 sort each sublist using mergesort.
4 merge both sublists into one sorted list.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 16 / 34



Mergesort

Like Quicksort, Mergesort uses a divide and conquer strategy, and is
naturally recursive.

Basic algorithm:
1 if list length is 0 or 1 then return.
2 partition list into two sublists of (nearly) equal size.

3 sort each sublist using mergesort.
4 merge both sublists into one sorted list.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 16 / 34



Mergesort

Like Quicksort, Mergesort uses a divide and conquer strategy, and is
naturally recursive.

Basic algorithm:
1 if list length is 0 or 1 then return.
2 partition list into two sublists of (nearly) equal size.
3 sort each sublist using mergesort.

4 merge both sublists into one sorted list.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 16 / 34



Mergesort

Like Quicksort, Mergesort uses a divide and conquer strategy, and is
naturally recursive.

Basic algorithm:
1 if list length is 0 or 1 then return.
2 partition list into two sublists of (nearly) equal size.
3 sort each sublist using mergesort.
4 merge both sublists into one sorted list.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 16 / 34



Mergesort

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

7

2

8

1

4

3

6

2

5

7

8

1

3

4

6

1

2

3

4

5

6

7

8

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 17 / 34



Mergesort

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

7

2

8

1

4

3

6

2

5

7

8

1

3

4

6

1

2

3

4

5

6

7

8

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 17 / 34



Mergesort

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

7

2

8

1

4

3

6

2

5

7

8

1

3

4

6

1

2

3

4

5

6

7

8

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 17 / 34



Mergesort

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

7

2

8

1

4

3

6

2

5

7

8

1

3

4

6

1

2

3

4

5

6

7

8

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 17 / 34



Mergesort

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

7

2

8

1

4

3

6

2

5

7

8

1

3

4

6

1

2

3

4

5

6

7

8

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 17 / 34



Mergesort

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

7

2

8

1

4

3

6

2

5

7

8

1

3

4

6

1

2

3

4

5

6

7

8

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 17 / 34



Mergesort

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

7

2

8

4

1

3

6

5

7

2

8

1

4

3

6

2

5

7

8

1

3

4

6

1

2

3

4

5

6

7

8

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 17 / 34



Mergesort

Like the Quicksort the average number of comparisons is O(n log n).

Unlike the Quicksort, the worst case number of comparisons is also
O(n log n).

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 18 / 34



Mergesort

Like the Quicksort the average number of comparisons is O(n log n).

Unlike the Quicksort, the worst case number of comparisons is also
O(n log n).

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 18 / 34



Outline

1 Overview of Sorting
Sorting Characteristics
Bubble Sort
Quicksort
Mergesort

2 Parallel Sorting
Assumptions
Parallel Quicksort
Parallel Sample Sort
Parallel Sorting by Regular Sampling (PSRS)

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 19 / 34



General Assumptions

We begin by stating exactly the sorting problem we are considering.

computer is a parallel cluster with p nodes.

list of length n is stored such that each cluster node has a
approximately dn/pe elements of the list.

sort keys are integers

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 20 / 34



General Assumptions

We begin by stating exactly the sorting problem we are considering.

computer is a parallel cluster with p nodes.

list of length n is stored such that each cluster node has a
approximately dn/pe elements of the list.

sort keys are integers

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 20 / 34



General Assumptions

We begin by stating exactly the sorting problem we are considering.

computer is a parallel cluster with p nodes.

list of length n is stored such that each cluster node has a
approximately dn/pe elements of the list.

sort keys are integers

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 20 / 34



Outline

1 Overview of Sorting
Sorting Characteristics
Bubble Sort
Quicksort
Mergesort

2 Parallel Sorting
Assumptions
Parallel Quicksort
Parallel Sample Sort
Parallel Sorting by Regular Sampling (PSRS)

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 21 / 34



Parallel Quicksort Algorithm Assumptions

Assume number of processes p and total length of the list n are both
powers of 2.

The process list can be partitioned into two halves using the most
significant bit of process ID. Processes with a leading 0 in their ID are
in the lower half of the process list while those with a leading 1 are in
the upper half.

Partner processes have the same ID except for the leading bit.

For example, suppose there are eight processes. Then we’d have

lower half upper half

000 100
001 101
010 110
011 111

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 22 / 34



Parallel Quicksort Algorithm Assumptions

Assume number of processes p and total length of the list n are both
powers of 2.

The process list can be partitioned into two halves using the most
significant bit of process ID. Processes with a leading 0 in their ID are
in the lower half of the process list while those with a leading 1 are in
the upper half.

Partner processes have the same ID except for the leading bit.

For example, suppose there are eight processes. Then we’d have

lower half upper half

000 100
001 101
010 110
011 111

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 22 / 34



Parallel Quicksort Algorithm Assumptions

Assume number of processes p and total length of the list n are both
powers of 2.

The process list can be partitioned into two halves using the most
significant bit of process ID. Processes with a leading 0 in their ID are
in the lower half of the process list while those with a leading 1 are in
the upper half.

Partner processes have the same ID except for the leading bit.

For example, suppose there are eight processes. Then we’d have

lower half upper half

000 100
001 101
010 110
011 111

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 22 / 34



Parallel Quicksort Algorithm Assumptions

Assume number of processes p and total length of the list n are both
powers of 2.

The process list can be partitioned into two halves using the most
significant bit of process ID. Processes with a leading 0 in their ID are
in the lower half of the process list while those with a leading 1 are in
the upper half.

Partner processes have the same ID except for the leading bit.

For example, suppose there are eight processes. Then we’d have

lower half upper half

000 100
001 101
010 110
011 111

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 22 / 34



Parallel Quicksort Algorithm

One process selects the pivot and broadcasts to all processes.

Each process in the lower half of the process list sends list elements
greater than the pivot to their partners in the upper half of the list.

Meanwhile, each process in the upper half of the process list sends list
elements less than the pivot to their partners in the lower half.

The upper and lower halves of the process list are now treated as
separate process lists each with p/2 processes. Appropriate upper and
lower half lists are identified and the algorithm recurses.

original lower half
lower half upper half

000 010
001 011

original upper half
lower half upper half

100 110
101 111

After log2 p recursions each process has its final portion of the entire
list; all that remains is to sort it using a sequential sort.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 23 / 34



Parallel Quicksort Algorithm

One process selects the pivot and broadcasts to all processes.

Each process in the lower half of the process list sends list elements
greater than the pivot to their partners in the upper half of the list.

Meanwhile, each process in the upper half of the process list sends list
elements less than the pivot to their partners in the lower half.

The upper and lower halves of the process list are now treated as
separate process lists each with p/2 processes. Appropriate upper and
lower half lists are identified and the algorithm recurses.

original lower half
lower half upper half

000 010
001 011

original upper half
lower half upper half

100 110
101 111

After log2 p recursions each process has its final portion of the entire
list; all that remains is to sort it using a sequential sort.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 23 / 34



Parallel Quicksort Algorithm

One process selects the pivot and broadcasts to all processes.

Each process in the lower half of the process list sends list elements
greater than the pivot to their partners in the upper half of the list.

Meanwhile, each process in the upper half of the process list sends list
elements less than the pivot to their partners in the lower half.

The upper and lower halves of the process list are now treated as
separate process lists each with p/2 processes. Appropriate upper and
lower half lists are identified and the algorithm recurses.

original lower half
lower half upper half

000 010
001 011

original upper half
lower half upper half

100 110
101 111

After log2 p recursions each process has its final portion of the entire
list; all that remains is to sort it using a sequential sort.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 23 / 34



Parallel Quicksort Algorithm

One process selects the pivot and broadcasts to all processes.

Each process in the lower half of the process list sends list elements
greater than the pivot to their partners in the upper half of the list.

Meanwhile, each process in the upper half of the process list sends list
elements less than the pivot to their partners in the lower half.

The upper and lower halves of the process list are now treated as
separate process lists each with p/2 processes. Appropriate upper and
lower half lists are identified and the algorithm recurses.

original lower half
lower half upper half

000 010
001 011

original upper half
lower half upper half

100 110
101 111

After log2 p recursions each process has its final portion of the entire
list; all that remains is to sort it using a sequential sort.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 23 / 34



Parallel Quicksort Algorithm

One process selects the pivot and broadcasts to all processes.

Each process in the lower half of the process list sends list elements
greater than the pivot to their partners in the upper half of the list.

Meanwhile, each process in the upper half of the process list sends list
elements less than the pivot to their partners in the lower half.

The upper and lower halves of the process list are now treated as
separate process lists each with p/2 processes. Appropriate upper and
lower half lists are identified and the algorithm recurses.

original lower half
lower half upper half

000 010
001 011

original upper half
lower half upper half

100 110
101 111

After log2 p recursions each process has its final portion of the entire
list; all that remains is to sort it using a sequential sort.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 23 / 34



Parallel Quicksort Computation Cost

During the first phase each process makes n/p comparisons.

In the ideal case each process continues to be responsible for n/p list
items and subsequent phases of the sort also require n/p comparisons.
Since there are log2 p steps, the comparison count will be (n log2 p)/p.

Unfortunately, the sublist sizes in each process are unlikely to remain
uniform. This means that the comparison work will become
unbalanced and, in the worst case where one process is responsible for
a majority of the list, approach the level for a sequential algorithm.

Of course, once the list elements have all been collected in the proper
processes, they must still be sorted using a sequential sort.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 24 / 34



Parallel Quicksort Computation Cost

During the first phase each process makes n/p comparisons.

In the ideal case each process continues to be responsible for n/p list
items and subsequent phases of the sort also require n/p comparisons.
Since there are log2 p steps, the comparison count will be (n log2 p)/p.

Unfortunately, the sublist sizes in each process are unlikely to remain
uniform. This means that the comparison work will become
unbalanced and, in the worst case where one process is responsible for
a majority of the list, approach the level for a sequential algorithm.

Of course, once the list elements have all been collected in the proper
processes, they must still be sorted using a sequential sort.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 24 / 34



Parallel Quicksort Computation Cost

During the first phase each process makes n/p comparisons.

In the ideal case each process continues to be responsible for n/p list
items and subsequent phases of the sort also require n/p comparisons.
Since there are log2 p steps, the comparison count will be (n log2 p)/p.

Unfortunately, the sublist sizes in each process are unlikely to remain
uniform. This means that the comparison work will become
unbalanced and, in the worst case where one process is responsible for
a majority of the list, approach the level for a sequential algorithm.

Of course, once the list elements have all been collected in the proper
processes, they must still be sorted using a sequential sort.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 24 / 34



Parallel Quicksort Computation Cost

During the first phase each process makes n/p comparisons.

In the ideal case each process continues to be responsible for n/p list
items and subsequent phases of the sort also require n/p comparisons.
Since there are log2 p steps, the comparison count will be (n log2 p)/p.

Unfortunately, the sublist sizes in each process are unlikely to remain
uniform. This means that the comparison work will become
unbalanced and, in the worst case where one process is responsible for
a majority of the list, approach the level for a sequential algorithm.

Of course, once the list elements have all been collected in the proper
processes, they must still be sorted using a sequential sort.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 24 / 34



Parallel Quicksort Communication Cost

As already noted, there are log2 p steps required to rearrange the list
elements between the processes. Each step consists of broadcasting
the pivot and exchanging half the list data (on average).

The communication cost for each broadcast is

tbroadcast = tstartup + 1 · tdata

The average communication cost for the data exchanges is

texchange = 2

(
tstartup +

1

2

n

p
tdata

)
= 2tstartup +

n

p
tdata

(This assumes that send/receive operations are not overlapped.)

Summing these two costs we find the communication cost per step is

tcomm per step = tbroadcast + texchange = 3tstartup +

(
1 +

n

p

)
tdata.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 25 / 34



Parallel Quicksort Communication Cost

As already noted, there are log2 p steps required to rearrange the list
elements between the processes. Each step consists of broadcasting
the pivot and exchanging half the list data (on average).

The communication cost for each broadcast is

tbroadcast = tstartup + 1 · tdata

The average communication cost for the data exchanges is

texchange = 2

(
tstartup +

1

2

n

p
tdata

)
= 2tstartup +

n

p
tdata

(This assumes that send/receive operations are not overlapped.)

Summing these two costs we find the communication cost per step is

tcomm per step = tbroadcast + texchange = 3tstartup +

(
1 +

n

p

)
tdata.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 25 / 34



Parallel Quicksort Communication Cost

As already noted, there are log2 p steps required to rearrange the list
elements between the processes. Each step consists of broadcasting
the pivot and exchanging half the list data (on average).

The communication cost for each broadcast is

tbroadcast = tstartup + 1 · tdata

The average communication cost for the data exchanges is

texchange = 2

(
tstartup +

1

2

n

p
tdata

)
= 2tstartup +

n

p
tdata

(This assumes that send/receive operations are not overlapped.)

Summing these two costs we find the communication cost per step is

tcomm per step = tbroadcast + texchange = 3tstartup +

(
1 +

n

p

)
tdata.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 25 / 34



Parallel Quicksort Communication Cost

As already noted, there are log2 p steps required to rearrange the list
elements between the processes. Each step consists of broadcasting
the pivot and exchanging half the list data (on average).

The communication cost for each broadcast is

tbroadcast = tstartup + 1 · tdata

The average communication cost for the data exchanges is

texchange = 2

(
tstartup +

1

2

n

p
tdata

)
= 2tstartup +

n

p
tdata

(This assumes that send/receive operations are not overlapped.)

Summing these two costs we find the communication cost per step is

tcomm per step = tbroadcast + texchange = 3tstartup +

(
1 +

n

p

)
tdata.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 25 / 34



Parallel Quicksort Communication Cost

Since there are log2 p steps, the total communication cost for all steps
is

ttotal comm =

[
3tstartup +

(
1 +

n

p

)
tdata

]
log2 p.

As already mentioned, however, the average sublist size in each
process can vary dramatically as the algorithm proceeds, meaning this
analysis may not apply to the typical case.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 26 / 34



Parallel Quicksort Communication Cost

Since there are log2 p steps, the total communication cost for all steps
is

ttotal comm =

[
3tstartup +

(
1 +

n

p

)
tdata

]
log2 p.

As already mentioned, however, the average sublist size in each
process can vary dramatically as the algorithm proceeds, meaning this
analysis may not apply to the typical case.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 26 / 34



Outline

1 Overview of Sorting
Sorting Characteristics
Bubble Sort
Quicksort
Mergesort

2 Parallel Sorting
Assumptions
Parallel Quicksort
Parallel Sample Sort
Parallel Sorting by Regular Sampling (PSRS)

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 27 / 34



Seeking a More Balanced Workload

The main problem with the parallel Quicksort lies in the choice of the
pivot.

The Sample Sort and its relatives seek to mitigate this problem by
choosing p − 1 values, called splitters, that are used to partition the
data into p parts, one for each process.

Basic Algorithm

1 Each process sorts its original portion of the list.
2 Splitters are chosen and distributed.
3 Each process partitions its sorted data using the splitters and

exchanges data with other processes.
4 Each process sorts its final portion of the list.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 28 / 34



Seeking a More Balanced Workload

The main problem with the parallel Quicksort lies in the choice of the
pivot.

The Sample Sort and its relatives seek to mitigate this problem by
choosing p − 1 values, called splitters, that are used to partition the
data into p parts, one for each process.

Basic Algorithm

1 Each process sorts its original portion of the list.
2 Splitters are chosen and distributed.
3 Each process partitions its sorted data using the splitters and

exchanges data with other processes.
4 Each process sorts its final portion of the list.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 28 / 34



Seeking a More Balanced Workload

The main problem with the parallel Quicksort lies in the choice of the
pivot.

The Sample Sort and its relatives seek to mitigate this problem by
choosing p − 1 values, called splitters, that are used to partition the
data into p parts, one for each process.

Basic Algorithm

1 Each process sorts its original portion of the list.
2 Splitters are chosen and distributed.
3 Each process partitions its sorted data using the splitters and

exchanges data with other processes.
4 Each process sorts its final portion of the list.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 28 / 34



Seeking a More Balanced Workload

The main problem with the parallel Quicksort lies in the choice of the
pivot.

The Sample Sort and its relatives seek to mitigate this problem by
choosing p − 1 values, called splitters, that are used to partition the
data into p parts, one for each process.

Basic Algorithm
1 Each process sorts its original portion of the list.

2 Splitters are chosen and distributed.
3 Each process partitions its sorted data using the splitters and

exchanges data with other processes.
4 Each process sorts its final portion of the list.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 28 / 34



Seeking a More Balanced Workload

The main problem with the parallel Quicksort lies in the choice of the
pivot.

The Sample Sort and its relatives seek to mitigate this problem by
choosing p − 1 values, called splitters, that are used to partition the
data into p parts, one for each process.

Basic Algorithm
1 Each process sorts its original portion of the list.
2 Splitters are chosen and distributed.

3 Each process partitions its sorted data using the splitters and
exchanges data with other processes.

4 Each process sorts its final portion of the list.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 28 / 34



Seeking a More Balanced Workload

The main problem with the parallel Quicksort lies in the choice of the
pivot.

The Sample Sort and its relatives seek to mitigate this problem by
choosing p − 1 values, called splitters, that are used to partition the
data into p parts, one for each process.

Basic Algorithm
1 Each process sorts its original portion of the list.
2 Splitters are chosen and distributed.
3 Each process partitions its sorted data using the splitters and

exchanges data with other processes.

4 Each process sorts its final portion of the list.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 28 / 34



Seeking a More Balanced Workload

The main problem with the parallel Quicksort lies in the choice of the
pivot.

The Sample Sort and its relatives seek to mitigate this problem by
choosing p − 1 values, called splitters, that are used to partition the
data into p parts, one for each process.

Basic Algorithm
1 Each process sorts its original portion of the list.
2 Splitters are chosen and distributed.
3 Each process partitions its sorted data using the splitters and

exchanges data with other processes.
4 Each process sorts its final portion of the list.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 28 / 34



Selecting Splitters for the Sample Sort

The name “Sample Sort” comes from the fact that splitters are
determined using a random sample from each process’ sublist.

Each process collects some number s, often 32 or 64, of samples from
its portion of the original list data.

One process gathers all s · p samples and produces a sorted list.

The p − 1 splitters are then found in this list at locations
1s, 2s, 3s, . . . , (p − 1)s.

The splitters are then broadcast to all processes.

One potential complication is that splitters must be unique; elements
in the original list can be “tagged” in some way so that list can be
uniquely ordered.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 29 / 34



Selecting Splitters for the Sample Sort

The name “Sample Sort” comes from the fact that splitters are
determined using a random sample from each process’ sublist.

Each process collects some number s, often 32 or 64, of samples from
its portion of the original list data.

One process gathers all s · p samples and produces a sorted list.

The p − 1 splitters are then found in this list at locations
1s, 2s, 3s, . . . , (p − 1)s.

The splitters are then broadcast to all processes.

One potential complication is that splitters must be unique; elements
in the original list can be “tagged” in some way so that list can be
uniquely ordered.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 29 / 34



Selecting Splitters for the Sample Sort

The name “Sample Sort” comes from the fact that splitters are
determined using a random sample from each process’ sublist.

Each process collects some number s, often 32 or 64, of samples from
its portion of the original list data.

One process gathers all s · p samples and produces a sorted list.

The p − 1 splitters are then found in this list at locations
1s, 2s, 3s, . . . , (p − 1)s.

The splitters are then broadcast to all processes.

One potential complication is that splitters must be unique; elements
in the original list can be “tagged” in some way so that list can be
uniquely ordered.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 29 / 34



Selecting Splitters for the Sample Sort

The name “Sample Sort” comes from the fact that splitters are
determined using a random sample from each process’ sublist.

Each process collects some number s, often 32 or 64, of samples from
its portion of the original list data.

One process gathers all s · p samples and produces a sorted list.

The p − 1 splitters are then found in this list at locations
1s, 2s, 3s, . . . , (p − 1)s.

The splitters are then broadcast to all processes.

One potential complication is that splitters must be unique; elements
in the original list can be “tagged” in some way so that list can be
uniquely ordered.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 29 / 34



Selecting Splitters for the Sample Sort

The name “Sample Sort” comes from the fact that splitters are
determined using a random sample from each process’ sublist.

Each process collects some number s, often 32 or 64, of samples from
its portion of the original list data.

One process gathers all s · p samples and produces a sorted list.

The p − 1 splitters are then found in this list at locations
1s, 2s, 3s, . . . , (p − 1)s.

The splitters are then broadcast to all processes.

One potential complication is that splitters must be unique; elements
in the original list can be “tagged” in some way so that list can be
uniquely ordered.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 29 / 34



Selecting Splitters for the Sample Sort

The name “Sample Sort” comes from the fact that splitters are
determined using a random sample from each process’ sublist.

Each process collects some number s, often 32 or 64, of samples from
its portion of the original list data.

One process gathers all s · p samples and produces a sorted list.

The p − 1 splitters are then found in this list at locations
1s, 2s, 3s, . . . , (p − 1)s.

The splitters are then broadcast to all processes.

One potential complication is that splitters must be unique; elements
in the original list can be “tagged” in some way so that list can be
uniquely ordered.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 29 / 34



Sample Sort Example

Original list distributed on two processors (p = 2)

12 14 8 16 2 13 4 11 1 6 15 7 10 5 9 3

Each process sorts its portion of the list

2 4 8 11 12 13 14 16 1 3 5 6 7 9 10 15

Two random samples (s = 2) are chosen in by each process

2 4 8 11 12 13 14 16 1 3 5 6 7 9 10 15

Samples are collected on single processor

8 14 7 10

Samples are then sorted

7 8 10 14

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 30 / 34



Sample Sort Example

Original list distributed on two processors (p = 2)

12 14 8 16 2 13 4 11 1 6 15 7 10 5 9 3

Each process sorts its portion of the list

2 4 8 11 12 13 14 16 1 3 5 6 7 9 10 15

Two random samples (s = 2) are chosen in by each process

2 4 8 11 12 13 14 16 1 3 5 6 7 9 10 15

Samples are collected on single processor

8 14 7 10

Samples are then sorted

7 8 10 14

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 30 / 34



Sample Sort Example

Original list distributed on two processors (p = 2)

12 14 8 16 2 13 4 11 1 6 15 7 10 5 9 3

Each process sorts its portion of the list

2 4 8 11 12 13 14 16 1 3 5 6 7 9 10 15

Two random samples (s = 2) are chosen in by each process

2 4 8 11 12 13 14 16 1 3 5 6 7 9 10 15

Samples are collected on single processor

8 14 7 10

Samples are then sorted

7 8 10 14

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 30 / 34



Sample Sort Example

Original list distributed on two processors (p = 2)

12 14 8 16 2 13 4 11 1 6 15 7 10 5 9 3

Each process sorts its portion of the list

2 4 8 11 12 13 14 16 1 3 5 6 7 9 10 15

Two random samples (s = 2) are chosen in by each process

2 4 8 11 12 13 14 16 1 3 5 6 7 9 10 15

Samples are collected on single processor

8 14 7 10

Samples are then sorted

7 8 10 14

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 30 / 34



Sample Sort Example

Original list distributed on two processors (p = 2)

12 14 8 16 2 13 4 11 1 6 15 7 10 5 9 3

Each process sorts its portion of the list

2 4 8 11 12 13 14 16 1 3 5 6 7 9 10 15

Two random samples (s = 2) are chosen in by each process

2 4 8 11 12 13 14 16 1 3 5 6 7 9 10 15

Samples are collected on single processor

8 14 7 10

Samples are then sorted

7 8 10 14

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 30 / 34



Sample Sort Example (continued)

The sorted samples: 7 8 10 14

Since there are only two processes, there is only one splitter, which is
located at position 1s. As s = 2, the single element splitter list
contains only the element 10.

The splitter list is broadcast to the processes, who then partition their
data.

2 4 8 11 12 13 14 16 1 3 5 6 7 9 10 15

Processes exchange partitioned data

2 4 8 1 3 5 6 7 9 11 12 13 14 16 10 15

Finally, each process sequentially sorts its portion of the list.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 31 / 34



Sample Sort Example (continued)

The sorted samples: 7 8 10 14

Since there are only two processes, there is only one splitter, which is
located at position 1s. As s = 2, the single element splitter list
contains only the element 10.

The splitter list is broadcast to the processes, who then partition their
data.

2 4 8 11 12 13 14 16 1 3 5 6 7 9 10 15

Processes exchange partitioned data

2 4 8 1 3 5 6 7 9 11 12 13 14 16 10 15

Finally, each process sequentially sorts its portion of the list.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 31 / 34



Sample Sort Example (continued)

The sorted samples: 7 8 10 14

Since there are only two processes, there is only one splitter, which is
located at position 1s. As s = 2, the single element splitter list
contains only the element 10.

The splitter list is broadcast to the processes, who then partition their
data.

2 4 8 11 12 13 14 16 1 3 5 6 7 9 10 15

Processes exchange partitioned data

2 4 8 1 3 5 6 7 9 11 12 13 14 16 10 15

Finally, each process sequentially sorts its portion of the list.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 31 / 34



Sample Sort Example (continued)

The sorted samples: 7 8 10 14

Since there are only two processes, there is only one splitter, which is
located at position 1s. As s = 2, the single element splitter list
contains only the element 10.

The splitter list is broadcast to the processes, who then partition their
data.

2 4 8 11 12 13 14 16 1 3 5 6 7 9 10 15

Processes exchange partitioned data

2 4 8 1 3 5 6 7 9 11 12 13 14 16 10 15

Finally, each process sequentially sorts its portion of the list.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 31 / 34



Discussion of Sample Sort

Each process must carry out two sequential sorts

One process must collect samples sort them, choose splitters, and
broadcast the splitters.

Most literature suggests that the Radix Sort be used for the
sequential sorts; Quicksort can also be used.

As our example illustrates, it is often the case that the sorting
operation will end with an imbalance in distribution of the sorted list.
Usually this will be smaller than with the parallel Quicksort.

The number of splitters s can impact the performance of the
algorithm; in general smaller s values lead to greater load imbalances.
As s increases the sequential work to determine the splitters increases.

During the data exchange, processes must be prepared to accept an
unknown amount of data. To accommodate this we can use an
additional global communication (e.g. using MPI_Allgather()) to
distribute the partition sizes each process is preparing to send.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 32 / 34



Discussion of Sample Sort

Each process must carry out two sequential sorts

One process must collect samples sort them, choose splitters, and
broadcast the splitters.

Most literature suggests that the Radix Sort be used for the
sequential sorts; Quicksort can also be used.

As our example illustrates, it is often the case that the sorting
operation will end with an imbalance in distribution of the sorted list.
Usually this will be smaller than with the parallel Quicksort.

The number of splitters s can impact the performance of the
algorithm; in general smaller s values lead to greater load imbalances.
As s increases the sequential work to determine the splitters increases.

During the data exchange, processes must be prepared to accept an
unknown amount of data. To accommodate this we can use an
additional global communication (e.g. using MPI_Allgather()) to
distribute the partition sizes each process is preparing to send.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 32 / 34



Discussion of Sample Sort

Each process must carry out two sequential sorts

One process must collect samples sort them, choose splitters, and
broadcast the splitters.

Most literature suggests that the Radix Sort be used for the
sequential sorts; Quicksort can also be used.

As our example illustrates, it is often the case that the sorting
operation will end with an imbalance in distribution of the sorted list.
Usually this will be smaller than with the parallel Quicksort.

The number of splitters s can impact the performance of the
algorithm; in general smaller s values lead to greater load imbalances.
As s increases the sequential work to determine the splitters increases.

During the data exchange, processes must be prepared to accept an
unknown amount of data. To accommodate this we can use an
additional global communication (e.g. using MPI_Allgather()) to
distribute the partition sizes each process is preparing to send.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 32 / 34



Discussion of Sample Sort

Each process must carry out two sequential sorts

One process must collect samples sort them, choose splitters, and
broadcast the splitters.

Most literature suggests that the Radix Sort be used for the
sequential sorts; Quicksort can also be used.

As our example illustrates, it is often the case that the sorting
operation will end with an imbalance in distribution of the sorted list.
Usually this will be smaller than with the parallel Quicksort.

The number of splitters s can impact the performance of the
algorithm; in general smaller s values lead to greater load imbalances.
As s increases the sequential work to determine the splitters increases.

During the data exchange, processes must be prepared to accept an
unknown amount of data. To accommodate this we can use an
additional global communication (e.g. using MPI_Allgather()) to
distribute the partition sizes each process is preparing to send.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 32 / 34



Discussion of Sample Sort

Each process must carry out two sequential sorts

One process must collect samples sort them, choose splitters, and
broadcast the splitters.

Most literature suggests that the Radix Sort be used for the
sequential sorts; Quicksort can also be used.

As our example illustrates, it is often the case that the sorting
operation will end with an imbalance in distribution of the sorted list.
Usually this will be smaller than with the parallel Quicksort.

The number of splitters s can impact the performance of the
algorithm; in general smaller s values lead to greater load imbalances.
As s increases the sequential work to determine the splitters increases.

During the data exchange, processes must be prepared to accept an
unknown amount of data. To accommodate this we can use an
additional global communication (e.g. using MPI_Allgather()) to
distribute the partition sizes each process is preparing to send.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 32 / 34



Discussion of Sample Sort

Each process must carry out two sequential sorts

One process must collect samples sort them, choose splitters, and
broadcast the splitters.

Most literature suggests that the Radix Sort be used for the
sequential sorts; Quicksort can also be used.

As our example illustrates, it is often the case that the sorting
operation will end with an imbalance in distribution of the sorted list.
Usually this will be smaller than with the parallel Quicksort.

The number of splitters s can impact the performance of the
algorithm; in general smaller s values lead to greater load imbalances.
As s increases the sequential work to determine the splitters increases.

During the data exchange, processes must be prepared to accept an
unknown amount of data. To accommodate this we can use an
additional global communication (e.g. using MPI_Allgather()) to
distribute the partition sizes each process is preparing to send.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 32 / 34



Outline

1 Overview of Sorting
Sorting Characteristics
Bubble Sort
Quicksort
Mergesort

2 Parallel Sorting
Assumptions
Parallel Quicksort
Parallel Sample Sort
Parallel Sorting by Regular Sampling (PSRS)

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 33 / 34



Parallel Sorting by Regular Sampling (PSRS)

Rather than using a random sample to determine the splitters, the
PSRS selects specific elements of the locally sorted list as samples.

The phrase “regular sampling” implies that the elements are selected
at regular intervals in the local list.

Since each locally sorted list has roughly n/p elements, choosing p
regularly spaced samples can be done by selecting samples with indices

0,

(
1

p
· n
p

)
,

(
2

p
· n
p

)
, . . . ,

(
p − 1

p
· n
p

)
which reduces to

0,
n

p2
,

2n

p2
, . . . ,

(p − 1)n

p2
.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 34 / 34



Parallel Sorting by Regular Sampling (PSRS)

Rather than using a random sample to determine the splitters, the
PSRS selects specific elements of the locally sorted list as samples.

The phrase “regular sampling” implies that the elements are selected
at regular intervals in the local list.

Since each locally sorted list has roughly n/p elements, choosing p
regularly spaced samples can be done by selecting samples with indices

0,

(
1

p
· n
p

)
,

(
2

p
· n
p

)
, . . . ,

(
p − 1

p
· n
p

)
which reduces to

0,
n

p2
,

2n

p2
, . . . ,

(p − 1)n

p2
.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 34 / 34



Parallel Sorting by Regular Sampling (PSRS)

Rather than using a random sample to determine the splitters, the
PSRS selects specific elements of the locally sorted list as samples.

The phrase “regular sampling” implies that the elements are selected
at regular intervals in the local list.

Since each locally sorted list has roughly n/p elements, choosing p
regularly spaced samples can be done by selecting samples with indices

0,

(
1

p
· n
p

)
,

(
2

p
· n
p

)
, . . . ,

(
p − 1

p
· n
p

)
which reduces to

0,
n

p2
,

2n

p2
, . . . ,

(p − 1)n

p2
.

CPS343 (Parallel and HPC) Parallel Sorting Spring 2020 34 / 34


	Overview of Sorting
	Sorting Characteristics
	Bubble Sort
	Quicksort
	Mergesort

	Parallel Sorting
	Assumptions
	Parallel Quicksort
	Parallel Sample Sort
	Parallel Sorting by Regular Sampling (PSRS)


