
Performance Metrics, Prediction, and Measurement

CPS343

Parallel and High Performance Computing

Spring 2020

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 1 / 33



Outline

1 Analyzing Parallel Programs
Speedup and Efficiency
Amdahl’s Law and Gustafson-Barsis’s Law
Evaluating Parallel Algorithms

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 2 / 33



Outline

1 Analyzing Parallel Programs
Speedup and Efficiency
Amdahl’s Law and Gustafson-Barsis’s Law
Evaluating Parallel Algorithms

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 3 / 33



Speedup

Speedup is defined as

Speedup on N processors =
sequential execution time

execution time on N processors
=

tseq
tpar

Generally we want to use execution times obtained using the best
available algorithm.

The best algorithm for a sequential program may be different that the
best algorithm for a parallel program.

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 4 / 33



Efficiency

Efficiency is defined as

Efficiency =
speedup

N
=

tseq
N · tpar

Given this definition, we expect

0 ≤ efficiency ≤ 1

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 5 / 33



Speedup

We can write ψ(n,N) for speedup to show it is a function of both
problem size n and number of processors N.

Definitions:

σ(n): time required computation that is not parallelizable
ϕ(n): time required for computation that is parallelizable
κ(n,N): time for parallel overhead (communication, barriers, etc.)

Note that

tseq = σ(n) + ϕ(n)
tpar = σ(n) + ϕ(n)/N + κ(n,N)

Using these parameters, the speedup ψ(n,N) given by:

ψ(n,N) =
σ(n) + ϕ(n)

σ(n) + ϕ(n)/N + κ(n,N)

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 6 / 33



Speedup

Since κ(n,N) ≥ 0, if it is dropped (i.e. assume there is no parallel
overhead), we obtain an upper bound on speedup

ψ(n,N) ≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/N

Note: we will often not explicitly write n, so it is common to see
ψ(N) for speedup for a given problem size (i.e., fixed n).

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 7 / 33



Outline

1 Analyzing Parallel Programs
Speedup and Efficiency
Amdahl’s Law and Gustafson-Barsis’s Law
Evaluating Parallel Algorithms

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 8 / 33



Amdahl’s Law

First appearing in a paper by Gene Amdahl in 1967, this provides an upper
bound on achievable speedup based on the fraction of computation that
can be done in parallel.

T is the time needed for an application to execute on a single CPU.

α is the fraction of the computation that can be done in parallel...

...so 1− α is the fraction that must be carried out on a single CPU.

If we ignore parallel overhead we have

ψ(N) =
tseq
tpar
≤ T

(1− α)T + α(T/N)

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 9 / 33



Amdahl’s Law

Simplifying we have

ψ(N) =
tseq
tpar
≤ 1

(1− α) + α/N

This is Amdahl’s Law. Note that is says something rather discouraging:
Even as N →∞ (i.e., the number of processors increases without bound),
speedup is bounded by

ψ ≤ 1

1− α
.

For example, if 90% of the computation can be parallelized so α = 0.9,
the speedup cannot be larger than 1/0.1 = 10, regardless of the number of
processors!

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 10 / 33



Amdahl’s Law speedup prediction

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 11 / 33



Amdahl’s Law efficiency prediction

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 12 / 33



Amdahl’s Law example

Suppose a serial program reads n data from a file, performs some
computation, and then writes n data back out to another file. The I/O
time is measured and found to be 4500 + n µsec. If the computation
portion takes n2/200 µsec, what is the maximum speedup we can expect
when n=10,000 and N processors are used?

Assume that the I/O must be done serially but that the computation can
be parallelized. Computing α we find

α =
n2/200

(4500 + n) + n2/200
=

500000

4500 + 10000 + 500000
=

5000

5145
≈ 0.97182

so, by Amdahl’s Law,

ψ ≤ 1(
1− 5000

5145

)
+ 5000

5145N

=
5145

145 + 5000/N

This gives a maximum speedup of 6.68 on 8 processors and 11.27 on 16
processors.

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 13 / 33



Amdahl’s Law example

Suppose a serial program reads n data from a file, performs some
computation, and then writes n data back out to another file. The I/O
time is measured and found to be 4500 + n µsec. If the computation
portion takes n2/200 µsec, what is the maximum speedup we can expect
when n=10,000 and N processors are used?

Assume that the I/O must be done serially but that the computation can
be parallelized. Computing α we find

α =
n2/200

(4500 + n) + n2/200
=

500000

4500 + 10000 + 500000
=

5000

5145
≈ 0.97182

so, by Amdahl’s Law,

ψ ≤ 1(
1− 5000

5145

)
+ 5000

5145N

=
5145

145 + 5000/N

This gives a maximum speedup of 6.68 on 8 processors and 11.27 on 16
processors.

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 13 / 33



The Gustafson-Barsis Law

Amdahl’s Law reflects a particular perspective:

“We have a sequential program and want to figure out what
speedup is attainable by parallelizing as much of it as possible.”

It turns out that focusing on parallelizing a sequential program is not a
particularly good way to estimate how much speedup is possible.

This is because parallel implementations often look very different than a
sequential implementation for the same program.

A more useful characterization comes from consider the problem the other
way around:

“We have a parallel program and want to figure out how much
faster it is than a sequential program doing the same work.”

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 14 / 33



The Gustafson-Barsis Law

Amdahl’s Law reflects a particular perspective:

“We have a sequential program and want to figure out what
speedup is attainable by parallelizing as much of it as possible.”

It turns out that focusing on parallelizing a sequential program is not a
particularly good way to estimate how much speedup is possible.

This is because parallel implementations often look very different than a
sequential implementation for the same program.

A more useful characterization comes from consider the problem the other
way around:

“We have a parallel program and want to figure out how much
faster it is than a sequential program doing the same work.”

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 14 / 33



The Gustafson-Barsis Law

Amdahl’s law focuses on speedup as a function of increasing the
number of processors; i.e., “how much faster can we get a fixed
amount of work done using N processors?” Sometimes a better
question is “how much more work can we get done in a fixed amount
of time using N processors?”

Let T be the total time a parallel program requires when using N
processors. As before, let 0 ≤ α ≤ 1 be the fraction of execution time
the program spends executing code in parallel. Then

tseq = (1− α)T + α · T · N

so

ψ ≤ tseq
tpar

=
(1− α)T + α · T · N

T
= (1− α) + αN

This is the Gustafson-Barsis Law (1988).

The speedup estimate it produces is sometimes called scaled speedup.

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 15 / 33



Gustafson-Barsis Law speedup prediction

This is much more encouraging than what Amdahl’s Law showed us.

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 16 / 33



Gustafson-Barsis Law efficiency prediction

Again, this is much more encouraging!

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 17 / 33



Gustafson-Barsis’s Law example

A parallel program takes 134 seconds to run on 32 processors. The total
time spent in the sequential part of the program was 12 seconds. What is
the scaled speedup?

Here α = (134− 12)/134 = 122/134 so the scaled speedup is

(1− α) + αN =

(
1− 122

134

)
+

122

134
· 32 = 29.224

This means that the program is running approximately 29 times faster
than the program would run on one processor..., assuming it could run on
one processor.

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 18 / 33



Gustafson-Barsis’s Law example

A parallel program takes 134 seconds to run on 32 processors. The total
time spent in the sequential part of the program was 12 seconds. What is
the scaled speedup?

Here α = (134− 12)/134 = 122/134 so the scaled speedup is

(1− α) + αN =

(
1− 122

134

)
+

122

134
· 32 = 29.224

This means that the program is running approximately 29 times faster
than the program would run on one processor..., assuming it could run on
one processor.

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 18 / 33



The laws compared

Amdahl’s Law approximately suggests: Suppose a car is traveling
between two cities 60 miles apart, and has already spent one hour traveling
half the distance at 30 mph. No matter how fast you drive the last half, it
is impossible to achieve 90 mph average before reaching the second city.
Since it has already taken you 1 hour and you only have a distance of 60
miles total; going infinitely fast you would only achieve 60 mph.

Gustafson-Barsis’s Law approximately suggests: Suppose a car has
already been traveling for some time at less than 90mph. Given enough
time and distance to travel, the car’s average speed can always eventually
reach 90mph, no matter how long or how slowly it has already traveled.
For example, if the car spent one hour at 30 mph, it could achieve this by
driving at 120 mph for two additional hours, or at 150 mph for an hour.

(These were taken from a past Wikipedia page for Gustafson’s Law but no longer appear in the page as of Jan 2018).

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 19 / 33

http://en.wikipedia.org/wiki/Gustafson's_law


Outline

1 Analyzing Parallel Programs
Speedup and Efficiency
Amdahl’s Law and Gustafson-Barsis’s Law
Evaluating Parallel Algorithms

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 20 / 33



Speedup revisited

The above metrics ignore communication and other parallel overhead.
When evaluating an approach to parallelizing a task, we should
include estimates of communication costs since these can dominate
parallel program time.

As before, we take tseq be the time for a sequential version of the
program and tpar be the time for the parallel algorithm on N
processors. Then speedup is

ψ =
tseq
tpar

.

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 21 / 33



Parallel Execution Time

Parallel execution time tpar can be broken down into two parts,
computation time tcomp and communication time tcomm.

tp = tcomp + tcomm

Speedup is then

ψ =
tseq
tpar

=
tseq

tcomp + tcomm

The computation/communication ratio is tcomp/tcomm.

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 22 / 33



Communication Time

Typically the time for communication can be broken down into two parts,
the time tstartup necessary for building the message and initiating the
transfer, and the time tdata required per data item in the message. At a
first approximation this looks like

t

m

tstartup

where m is the number of data items sent.

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 23 / 33



A communication timing experiment

The values of tstartup and tdata for a parallel cluster can be determined
empirically.

Test program sends messages ranging in length from 100 to 10000
integers between two nodes A and B.

Each message is sent from node A and received by node B and then
sent back and received by node A.

Repeated 100 times

Linear regression used to fit line to timing data

Using the workstation cluster we had in Fall 2010 (just before we
moved in KOSC), we determined tstartup = 88.25µsec and
tdata = 0.0415µsec per integer, which corresponds to 96.43 MB/s
(assuming 4 bytes per integer)

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 24 / 33



Workstation cluster timing data (Fall 2010)

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 25 / 33



A communication timing experiment

Repeating the experiement in Spring 2016 we found tstartup = 121.425µsec
and tdata = 0.03685µsec per integer, which corresponds to 108.544 MB/s
(assuming 4 bytes per integer)

However, the performance curve was surprising...

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 26 / 33



Workstation cluster timing data (Spring 2016)

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 27 / 33



Minor Prophets cluster latency and bandwidth (2016)

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 28 / 33



Canaan cluster latency and bandwidth (2016)

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 29 / 33



LittleFe cluster latency and bandwidth (2013)

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 30 / 33



Cluster latency and bandwidth comparison

Minor Prophets Canaan

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 31 / 33



Cluster latency and bandwidth comparison

Minor Prophets Canaan

Error bars show 1 standard deviation in data values averaged to produce
plots.

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 32 / 33



Acknowledgements

Some material used in creating these slides comes from

Multicore and GPU Programming: An Integrated Approach,
Gerassimos Barlas, Morgan Kaufman/Elsevier, 2015.

Introduction to High Performance Scientific Computing, Victor
Eijkhout, 2015.

Parallel Programming in C with MPI and OpenMP, Michael Quinn,
McGraw-Hill, 2004.

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measurement Spring 2020 33 / 33


	Analyzing Parallel Programs
	Speedup and Efficiency
	Amdahl's Law and Gustafson-Barsis's Law
	Evaluating Parallel Algorithms


