Performance Metrics, Prediction, and Measurement

CPS343 (Parallel and HPC)

CPS343

Parallel and High Performance Computing

Spring 2020

Performance Metrics, Prediction, and Measur: Spring 2020 1/33

utline

© Analyzing Parallel Programs
@ Speedup and Efficiency
@ Amdahl’s Law and Gustafson-Barsis’s Law
@ Evaluating Parallel Algorithms

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur: Spring 2020

Outline

0 Analyzing Parallel Programs
@ Speedup and Efficiency

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur: Spring 2020 3/33

@ Speedup is defined as

sequential execution time tseq

Speedup on N processors = - - =
execution time on N processors tpar

@ Generally we want to use execution times obtained using the best
available algorithm.

The best algorithm for a sequential program may be different that the
best algorithm for a parallel program.

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur Spring 2020 4/33

o Efficiency is defined as

speedup tseq
N N-tpr

Efficiency =

@ Given this definition, we expect

0 < efficiency <1

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur Spring 2020 5/33

e We can write ¢(n, N) for speedup to show it is a function of both
problem size n and number of processors N.
@ Definitions:

e o(n): time required computation that is not parallelizable
e (n): time required for computation that is parallelizable
o k(n, N): time for parallel overhead (communication, barriers, etc.)

o Note that
o teeq = a(n) + ¢(n)
o toar = a(n) + (n)/N + k(n, N)
@ Using these parameters, the speedup 1(n, N) given by:

C o(n)teln)
U N = ey T o) N + (.)

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur Spring 2020 6/33

@ Since k(n,N) >0, if it is dropped (i.e. assume there is no parallel
overhead), we obtain an upper bound on speedup

o(n) + ¢(n)
a(n) +¢(n)/N

@ Note: we will often not explicitly write n, so it is common to see
(N) for speedup for a given problem size (i.e., fixed n).

P(n, N) <

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur: Spring 2020

Outline

0 Analyzing Parallel Programs

@ Amdahl’s Law and Gustafson-Barsis's Law

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur: Spring 2020 8/33

Amdahl's Law

First appearing in a paper by Gene Amdahl in 1967, this provides an upper
bound on achievable speedup based on the fraction of computation that
can be done in parallel.

@ T is the time needed for an application to execute on a single CPU.
@ « is the fraction of the computation that can be done in parallel...

@ ...s0 1 — « is the fraction that must be carried out on a single CPU.

If we ignore parallel overhead we have

— tseq < T
toar — (1—a)T +(T/N)

»(N)

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur Spring 2020 9/33

Amdahl's Law

Simplifying we have

_ teg _ 1

v(N) = toar ~ (L—0a)+a/N

This is Amdahl’s Law. Note that is says something rather discouraging:

Even as N — oo (i.e., the number of processors increases without bound),
speedup is bounded by
1

1—a’

Y <

For example, if 90% of the computation can be parallelized so aw = 0.9,

the speedup cannot be larger than 1/0.1 = 10, regardless of the number of
processors!

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur Spring 2020 10/33

Amdahl’'s Law speedup prediction

Amdal's Law speedup predictions

9 T T
—e =09

gl| a4 a=08 1
v a=0.7

7l|®® a=0.6 |
*¢ a=05

optimal speedup
w

70

3 1
g —a—a—8 & a8
2t il .
1 1 L L L L L
0 10 20 30 40 50 60

number of processes

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur:

Spring 2020

Amdahl's Law efficiency prediction

1.0

Efficiency Predictions with Amdahl's Law

0.8 |

efficiency
=]
(2]
T

o
IS
T

0.2

e—e
A
—
=B |
>

a=0.9

0.0
0

20 30 40 50
number of processes

70

CPS343 (Parallel and HPC)

Performance Metrics, Prediction, and Measur:

Spring 2020

12/33

Amdahl’'s Law example

Suppose a serial program reads n data from a file, performs some
computation, and then writes n data back out to another file. The I/O
time is measured and found to be 4500 + n usec. If the computation
portion takes n®/200 pusec, what is the maximum speedup we can expect
when n=10,000 and N processors are used?

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur Spring 2020 13/33

Amdahl’'s Law example

Suppose a serial program reads n data from a file, performs some
computation, and then writes n data back out to another file. The I/O
time is measured and found to be 4500 + n usec. If the computation
portion takes n®/200 pusec, what is the maximum speedup we can expect
when n=10,000 and N processors are used?

Assume that the 1/O must be done serially but that the computation can
be parallelized. Computing a we find

n? /200 500000 _ 5000

_ ~ 0.97182
(4500 + n) + n2/200 _ 4500 + 10000 + 500000 _ 5145

so, by Amdahl's Law,

1 5145

000 000
(2145) + 55145/\/ 145 4+ 5000/ N

Y <

This gives a maximum speedup of 6.68 on 8 processors and 11.27 on 16

processors.
CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur Spring 2020 13/33

The Gustafson-Barsis Law

Amdahl’'s Law reflects a particular perspective:

“We have a sequential program and want to figure out what
speedup is attainable by parallelizing as much of it as possible.”

It turns out that focusing on parallelizing a sequential program is not a
particularly good way to estimate how much speedup is possible.

This is because parallel implementations often look very different than a
sequential implementation for the same program.

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur: Spring 2020 14 /33

The Gustafson-Barsis Law

Amdahl’'s Law reflects a particular perspective:

“We have a sequential program and want to figure out what
speedup is attainable by parallelizing as much of it as possible.”

It turns out that focusing on parallelizing a sequential program is not a
particularly good way to estimate how much speedup is possible.

This is because parallel implementations often look very different than a
sequential implementation for the same program.

A more useful characterization comes from consider the problem the other
way around:

“We have a parallel program and want to figure out how much
faster it is than a sequential program doing the same work."

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur: Spring 2020 14 /33

The Gustafson-Barsis Law

@ Amdahl’s law focuses on speedup as a function of increasing the
number of processors; i.e., “how much faster can we get a fixed
amount of work done using N processors?” Sometimes a better
question is "how much more work can we get done in a fixed amount
of time using N processors?”

@ Let T be the total time a parallel program requires when using N
processors. As before, let 0 < o < 1 be the fraction of execution time
the program spends executing code in parallel. Then

teq=(1—a)T+a-T-N

SO

v < fseq _ 1-a)T+a-T-N
tpar T
@ This is the Gustafson-Barsis Law (1988).

@ The speedup estimate it produces is sometimes called scaled speedup.

=(1-a)+aN

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur Spring 2020 15/33

Gustafson-Barsis Law speedup prediction

Gustafson-Barsis Law speedup predictions

60
—e =09
4 =08
50F v a=0.7
B8 a=06
< =05
40 -
[N
=3
k]
@
@
o
w 30 |
©
£
=
Q
=}
20+
10t
0

0 10 20 30 40 50 60 70
number of processes

This is much more encouraging than what Amdahl’'s Law showed us.

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur: Spring 2020

Gustafson-Barsis Law efficiency prediction

Efficiency Predictions with the Gustafson-Barsis Law

1.0
0.8 £ Ak 4
v ¥ ¥
061 B T 58 —a—8——8 8 u 1
o
c
2
)
£
v
0.4} i
e—e =09
a—a =038
0.2+ 1
v a=07
B8 a=06
4 a=05
0.0 n
10 20 30 40 50 60 70

number of processes

Again, this is much more encouraging!

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur Spring 2020 17 /33

Gustafson-Barsis's Law example

A parallel program takes 134 seconds to run on 32 processors. The total

time spent in the sequential part of the program was 12 seconds. What is
the scaled speedup?

CPS343 (Parallel and HPC)

Performance Metrics, Prediction, and Measur: Spring 2020

18/33

Gustafson-Barsis's Law example

A parallel program takes 134 seconds to run on 32 processors. The total
time spent in the sequential part of the program was 12 seconds. What is
the scaled speedup?

Here v = (134 — 12)/134 = 122/134 so the scaled speedup is

122 122
134 134

(l—a)—l—aN:(l— +22.32=29.224

This means that the program is running approximately 29 times faster
than the program would run on one processor..., assuming it could run on
one processor.

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur Spring 2020 18/33

The laws compared

Amdahl’s Law approximately suggests: Suppose a car is traveling
between two cities 60 miles apart, and has already spent one hour traveling
half the distance at 30 mph. No matter how fast you drive the last half, it
is impossible to achieve 90 mph average before reaching the second city.
Since it has already taken you 1 hour and you only have a distance of 60
miles total; going infinitely fast you would only achieve 60 mph.

Gustafson-Barsis’s Law approximately suggests: Suppose a car has
already been traveling for some time at less than 90mph. Given enough
time and distance to travel, the car’s average speed can always eventually
reach 90mph, no matter how long or how slowly it has already traveled.
For example, if the car spent one hour at 30 mph, it could achieve this by
driving at 120 mph for two additional hours, or at 150 mph for an hour.

(These were taken from a past Wikipedia page for Gustafson’s Law but no longer appear in the page as of Jan 2018).

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur Spring 2020 19/33

http://en.wikipedia.org/wiki/Gustafson's_law

Outline

0 Analyzing Parallel Programs

@ Evaluating Parallel Algorithms

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur: Spring 2020 20/33

Speedup revisited

@ The above metrics ignore communication and other parallel overhead.
When evaluating an approach to parallelizing a task, we should
include estimates of communication costs since these can dominate
parallel program time.

@ As before, we take tsq be the time for a sequential version of the
program and t,,r be the time for the parallel algorithm on N
processors. Then speedup is

tseq
p =
tpar

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur Spring 2020 21/33

Parallel Execution Time

@ Parallel execution time t,,, can be broken down into two parts,
computation time tcomp and communication time teomm.-

tp = tcomp + tcomm

@ Speedup is then
tseq tseq
¢ = —=
tpar tcomp + tcomm

e The computation/communication ratio is tcomp/ tcomm-

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur: Spring 2020

Communication Time

Typically the time for communication can be broken down into two parts,
the time tsartup Necessary for building the message and initiating the

transfer, and the time tg,:, required per data item in the message. At a
first approximation this looks like

t A

tstartup

y

where m is the number of data items sent.

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur:

Spring 2020

A communication timing experiment

The values of tsartup and tqata for a parallel cluster can be determined
empirically.

@ Test program sends messages ranging in length from 100 to 10000
integers between two nodes A and B.

@ Each message is sent from node A and received by node B and then
sent back and received by node A.

@ Repeated 100 times

@ Linear regression used to fit line to timing data

@ Using the workstation cluster we had in Fall 2010 (just before we
moved in KOSC), we determined tstartup = 88.25 pisec and

tdata = 0.0415 usec per integer, which corresponds to 96.43 MB/s
(assuming 4 bytes per integer)

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur Spring 2020 24 /33

Workstation cluster timing data (Fall 2010)

Cluster message send time (MPI_INT)
600 T T .

500

400

300

microseconds

200

100

0 2000 4000 6000 8000 10000
message length

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur: Spring 2020

25/33

A communication timing experiment

Repeating the experiement in Spring 2016 we found tstartup = 121.425 pisec
and tyata = 0.03685 psec per integer, which corresponds to 108.544 MB/s
(assuming 4 bytes per integer)

However, the performance curve was surprising...

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur Spring 2020 26 /33

Workstation cluster timing data (Spring 2016)

microseconds

600

500

400

300

200

100

Cluster message send time (MPI_INT)

Latency: 121.425 microseconds, Bandwidth: 108.544 MB/s

2000 4000 6000 8000 10000
number of MPI_INTs in message

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur: Spring 2020

27/33

Minor Prophets cluster

microseconds

microseconds

Cluster message send time (MPI_INT)
Latency: 135.074 microseconds, 115.131 MB/s

600
500
400
300
200
100
MPICH/all.dat
2000 2000 6000 8000 0
number of MPI_INTs in message
Cluster message send time (MPI_INT)
00 _Latency: 136.041 microseconds, 116.623 MB/s
500
400
300
200
100
OpenMPl/all.dat
2000 5000 10

2000 6000
number of MPL_INTs in message

CPS343 (Parallel and HPC)

latency and bandwidth (2016

Bandwidth (MB/s)

Bandwidth (MB/s)

Latency vs Bandwidth average (0 runs) on Minor Prophets
(error bars show 1 std. dev.)

120
18
116
14
12 MPICH/mpO1-mp02
v MPICH/mp11l-mpl2
126 128 130 132 134 136 138 140 142 1
Latency (microseconds)
Latency vs Bandwidth average (L0 runs) on Minor Prophets
N (error bars show 1 std. dev.)
19
18
17
16
15
14
13 OpenMPI/mp0

v OpenMP/mpll-mpl2

rformance Metrics, Prediction, and Measur:

26 128 130

Latency (microseconds)

36

B8 1

Canaan cluster latency and bandwidth (2016

microseconds

microseconds

Cluster message send time (MPI_INT)
Latency: 17.4277 microseconds, 657.878 MB/s

80
70
60
50
40
30
20

OpenMPI-TCP/all.dat

2000 2000 6000 8000 0000
number of MPI_INTs in message
Cluster message send time (MPI_INT)

Latency: 5.66401 microseconds, 3363.14 MB/s
16
1
12
10

OpenMPI-1B/all.dat

2000 2000 6000 8000 10000
number of MPL_INTs in message

CPS343 (Parallel and HPC)

Latency vs Bandwidth average (10 runs) on Canaan
(error bars show 1 std. dev.

1300

1200

1100
F 1000
]
=
5 900
H
H
& 800

700
600
-
17 18 19 21 2
Latency (microseconds)
Latency vs Bandwidth average (10 runs) on Canaan

P (error bars show 1 std. dev.

4000

3800
3
2
z OpenMPI-1B/n00-n01
£ 3600
g OpenMPI-IB/n16-n17
® 3400

3200 .

46 48 5.0 5.2 5.4 5.6 5.8 6.0

Latency (microseconds)

LittleFe cluster latency and bandwidth (2013

Cluster message send time (MPI_INT) Latency vs Bandwidth average (56 runs) on LittleFe Cluster
Latency: 3415.77 microseconds, Bandwidth: 3.61983 MB/s 3 (error bars show 1 std. dev.)
14000 e
12000
37
, 10000 2
H S36
g 8000 £
g]
§ Ias
£ 6000 K
34
4000
2000 33
7000 000 00, 000 To000 3o 3200 3300 3400 3500 3600 3700 3800
message length Latency (microseconds)
Cluster message send time (MPI_INT)
Latency: 3520.49 microseconds, Bandwidth: 3.39138 MB/s
14000
12000
, 10000
$ s000
5
£ 6000
4000
2000
7000 000 5000 000 0000

message length

Cluster latency and bandwidth comparison

Minor Prophets Canaan

Cluster message send time (MPI_INT)

Cluster message send time (MPLINT) Latency: 17.4277 microseconds, 657.878 MB/s

LINT)
Latency: 135.074 microseconds, Bandwidth: 115.131 MB/s

600

microseconds
8 g g g 8
microseconds.

MPICH/all.dat OpenMPI-TCP/al

2000 4000 6000 8000 10000
number of MPLINTs in message

2000 7000 6000 8000 10000
number of MPI_INTs in message

Cluster message send time (MPI_INT)
Cluster message send time (MPI_INT)
so0,_Latency: 136041 microseconds, 116,623 MBS Latency: 5.66401 microseconds, 3363.14 MB/s

1

500,
1
2

400,
10
8
200 6
4

100
2

OpenMPl/all.dat OpenMPI-1B/all.dat

2000 4000 5000 000 10000
number of MPLINTS in message

microseconds
g
microseconds

2000 7000 6000 000 0000
number of MPI_INTS in message

CPS343 (Parallel and HPC) Measur:

Cluster latency and bandwidth comparison

Minor Prophets Canaan

Latency vs Bandwidth average (10 runs) on Minor Prophets Latency vs Bandwidth average (10 runs) on Canaan
(error bars show 1 std. dev.) 4500 (error bars show 1 std. dev.)
120 ool ¢
3500
18 .
= Z 3000
El g e OpenMPI-IB/n00-n01
s £ v OpenMPI-IB/n16-n17
5 116 £ 2500
g g 4 OpenMPITCP/N00-n0L
H H < OpenMPI-TCP/n16-n17
5 5 2000
8 8
14
« MPICH/mp01-mp02 1500
v MPICH/mp11-mp12 ——
112|| 4 OpenMPI/mpo1-mpo2 1000
< OpenMPI/mp11-mp12
500 L]
125 30 5 Tio Tas 6 5 10 12 14 16 18 20 22
Latency (microseconds) Latency (microseconds)

Error bars show 1 standard deviation in data values averaged to produce
plots.

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur: Spring 2020 32/33

Acknowledgements

Some material used in creating these slides comes from

@ Multicore and GPU Programming: An Integrated Approach,
Gerassimos Barlas, Morgan Kaufman/Elsevier, 2015.

@ Introduction to High Performance Scientific Computing, Victor
Eijkhout, 2015.

@ Parallel Programming in C with MPIl and OpenMP, Michael Quinn,
McGraw-Hill, 2004.

CPS343 (Parallel and HPC) Performance Metrics, Prediction, and Measur Spring 2020 33/33

	Analyzing Parallel Programs
	Speedup and Efficiency
	Amdahl's Law and Gustafson-Barsis's Law
	Evaluating Parallel Algorithms

