
This folder contains three simulated implementations of a subset of the MIPS ISA.  These 
simulations are not intended to show how the MIPS ISA actually is implemented - rather they are 
intended to familiarize students with various implementation strategies using an ISA they are 
already familiar with.  (I use the MIPS ISA for teaching assembly language.)  Two of the strategies 
are similar - but not identical - to actual strategies that have been used in commercial 
implementations.  One is definitely not the way the MIPS ISA is actually implemented.

Subset of the MIPS ISA
These simulations implement a small subset of the MIPS ISA, including only the following 
instructions:
R-Type instructions: ADD, ADDU, AND, NOR, OR, SLL, SLLV, SLT, SLTU, SRA, 

SRAV, SRL, SRLV, SUB, SUBU, XOR
(However, overflow is not detected by the “Non-U” versions of 
arithmetic instructions, so both forms are equivalent - e.g. in the 
simulation both ADD and ADDU behave identically)

Immediate instructions: ADDI, ANDI, LUI, ORI, SLTI, XORI
Load-Store instructions: LW, SW
Branch/Jump instructions: BEQ, BNE, J, JAL, JR
MIPS IV ISA: MOVN, MOVZ

Implementation Strategies
• Multicycle: This implementation is included only for pedagogical purposes.  Actual MIPS 

implementations are pipelined, and exhibit behaviors (e.g. delayed branch and delayed load) 
which this implementation does not.  However, understanding this implementation can help the 
student to understand key concepts before trying to understand a pipelined implementation.
Most instructions are executed in four clock cycles (though some use only the first two).  The 
file MulticycleMIPSMicroArchitecture.pdf depicts the microarchitecture used for this 
implementation.  The file file MulticycleMIPSRTL.pdf shows the microoperations performed 
on each clock cycle for each instruction (except MOVN and MOVZ - see the Lab discussion 
below).  Microoperations are controlled by a 17-bit control word, with twelve groups of 1, 2, or 
3 bits controlling the various data paths and enabling the loading of various registers.
This simulation includes three different control units, with one being selected at any given time.  
(The default when it first starts is Manual).

• Manual: the control word is determined by manually setting the values of the various fields.  
Using this, it is possible to see how an individual instruction is executed by manually setting 
the control word to the value specified by the RTL for each cycle of the instruction.  (Of 
course, this is only useful for pedagogical purposes unless one were interested in a CPU 
running at human speeds :-)).

• Hardwired: a counter keeps track of the cycle number (0, 1, 2, or 3).  Each bit of the control 
word is a function of the current cycle number , the contents of the Instruction Register, and 
(in some cases) a comparator that compares two registers for equality.  On a real machine, 
these would be calculated by a network of gates, but in the simulation each bit is calculated 
by boolean functions realized in software.

• Microprogrammed: the bits of the control word are part of a microprogram stored in the 
control unit.  (Of course, RISC architecture is kept simple to avoid the need for 
microprogramming, but this alternative shows how microprogramming could be used.) 
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• Pipelined (without interlocking): This uses essentially the same microarchitecture as for the 
multicycle simulation, but broken into four stages, and requires four clocks to complete most 
instructions.  (A three clock implementation would be possible by using both edges of the clock, 
but for pedagogical reasons the simplicity of this approach seems preferable.)  At any given 
time, four successive instructions are being executed, one in each stage of the pipeline.  There 
are three Instruction Registers, one each for Stages 1, 2, and 3.  
 

• Stage 0 performs instruction fetch.  Stage 0 reads (but does not write) the Program 
Counter.  It uses a dedicated read-only memory port.  It  is not governed by any Instruction 
Register, but writes the Instruction Register for Stage 1.  

• Stage 1 performs two tasks: updating the program counter (either by incrementing the 
current value or by loading a branch/jump address), and loading values into the input 
registers of the ALU.   It therefore reads and writes the Program Counter, reads (but does 
not write) registers in the Register Set, and writes (but does not read) the ALU input 
registers.  At the end of the cycle, it copies its Instruction Register into the Instruction 
Register for Stage 2.

• Stage 2 performs a computation in the ALU.  It reads (but does not write) the ALU input 
registers, and writes (but does not read) the ALU output register.  At the end of the cycle, it 
copies its Instruction Register into the Instruction Register for Stage 3.

• Stage 3 performs at most one of three tasks, depending on the instruction it is executing: 
storing the value computed by the ALU into a register, reading a value from memory into a 
register, or writing a value from a register into memory.  (The latter two operations  use the 
output of the ALU to specify the address).  It therefore reads the ALU output register, and 
may either read or write a register in the Register Set.   It also has its own read-write 
memory port.

This simulation illustrates the two sorts of inter-stage dependency (hazard) that can occur in an 
ISA like MIPS: branch dependencies and data dependencies.  

• It exhibits one cycle delayed branch.  
• It utilizes forwarding to resolve the data dependency between a computational instruction 

that stores a result into a register and an immediately following instruction that uses the 
value in that same register.  That is, when appropriate, Stage 1 loads an ALU input register 
with the value being computed by the ALU in Stage 2, rather than using the (not-yet-
updated) value of a register.

•  It also utilizes forwarding to reduce to just one cycle (but not to eliminate) the data 
dependency between a load instruction that reads a value from memory into a register and a 
following instruction that uses the value in that same register.  That is, when appropriate, 
Stage 1 loads an ALU register with the value being read from memory by Stage 3 (by the 
instruction two ahead of it), rather than using the (not-yet-updated) value of a register.   

• However, the instruction immediately after a load instruction will get the old value of the 
register being loaded if it tries to use it; only an instruction two after a load instruction can 
use the value loaded.  (This amounts to one cycle delayed load.)

• Interlocked: this implementation is essentially the same as the pipelined implementation, except 
that it uses interlocking to eliminate data hazards (and thus does not require delayed load though 
it still requires delayed branch). This is the strategy used for MIPS implementations since the 
MIPS III ISA.   Moreover, for pedagogical purposes, understanding how interlocking can be 
used can help the student to understand superscalar systems where some form of interlocking is 
generally required.
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Using the Simulations
The three simulations exist in three executable jar files: mmips.jar (Multicycle), pmips.jar (Pipelined 
without interlocking), and imips.jar (Interlocked). 
The multicycle simulation presents the user with a graphical user interface that looks like this:

• The upper-left portion of the screen displays the microarchitecture.  Active data paths are shown 
in red; others are black.  For each MUX, a path is shown from the selected input to the output.  
The display above shows manual control selected.  Changing the selection in one of the groups 
of radio buttons, or checking or unchecking a checkbox, will cause appropriate bits in the 
control word to change.  This will, in turn, be represented in the data paths.  

• The value in any register can be edited by double-clicking it.  The Instruction Register can also 
be expanded to show the various fields (as determined by the op-code) by clicking its disclosure 
triangle.  When individual fields are shown, they can also be edited by double-clicking.  The 
contents of various memory locations can be shown by either editing the memory address or 
clicking the up and down arrow buttons.  The contents of the memory location at the selected 
address can be edited by double-clicking it.  It is also possible to load a text file into memory - 
see below for discussion of the format of this file.  (Equivalently, memory can also be loaded by 
choosing the Load option in the program’s File menu).

3



• A group of radio buttons at the lower right allows selection of either Hardwired or 
Microprogrammed control in place of Manual control.  In these cases, the control word is 
automatically calculated on each cycle. using the contents of various registers.  The state of the 
selected control unit is displayed on the lower left of the screen.

• A group of buttons in the upper-right allows one to simulate execution.  Clicking the Clock 
button will issue a single clock, which will result in the microoperation specified by the control 
word being carried out.  If Hardwired or Microprogrammed control is selected, a new control 
word will also be calculated using the new state of the system.  Clicking Run will cause clocks 
to be issued automatically.  (This will not normally produce meaningful results if Manual 
Control is selected, though).  The delay between clocks can be set by double-clicking the delay 
field, which will pop up an editor for it.  While the simulation is running, the Run button will be 
changed to a Stop button, which will terminate automatic issuing of clocks.   Clicking Reset will 
restore all registers to their initial state (0), but will not alter the contents of memory. 

The pipelined and interlocked implementations present the user an interface like this:

Tabs at the top allow the user to select separate panes for each Stage.  Each Stage exhibits only the 
components of the microarchitecture used by that stage, though all three instruction registers are 
always shown at the bottom of the screen.  Editing of register contents and memory, disclosure of 
Instruction Register contents, and simulated execution work the same way as with the Multicycle 
implementation (though instruction register disclosure is a bit unaesthetic!).  A form of hardwired 
control is always used for each stage.
These versions use blue text to report situations where forwarding or interlocking is being done.
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Format of Program Files
It is possible to load a MIPS program into memory by using either the Load File button on the 
displayed Memory or the Load option in the File menu.  Each non-comment line in the file will 
contain one of two things:

• A single 32-bit word to be loaded into memory (written in hexadecimal).
• An “@” character, followed by a hexadecimal number which represents the address where 

subsequent words are to be loaded.
Words contained in the file are loaded into successive memory location, but since each represents a 
32 bit word, addresses increase by 4 on each step.  If no starting address is specified, the first word 
goes into location 0, the second into 4 ...  It is also possible (and desirable) to embed comments in 
the file, beginning with “#”.   (If the first nonblank character on a line is “#”, the entire line is 
ignored.)
The following is an example of a simple program file.   Note that the assembly language code given 
in the comments is strictly for the benefit of the human reader; the translation of the code into 
machine language had to be done by hand when the file was created.
# This program adds 1 to the contents of memory location 1000
8c021000 # lw $2, 1000($0)
20420001 # addi $2, $2, 1
ac021000 # sw $2, 1000($0)
1000ffff # b .
@1000
2a # Starting value at 1000 is 2a

Building from Sources
Although the executable jar files run correctly as they stand, it may be necessary to rebuild the 
system from source.  All three versions share a common source code base, though some files are 
unique to a specific implementation.  The makefile in the root folder can be used to build the desired 
version(s) - see the comments in that file.  Three test programs are provided in the programs/ 
folder for “sanity-checking” the build - one for each implementation.   Each will set registers $1 .. 
$15 to 1, 2 ... f, and then will go into an infinite loop.  The appropriate test can be executed easily by 
loading it, setting the delay to 0 and pressing Run; the correct values should then appear in the first 
16 registers almost immediately, with registers $16 .. $31 unchanged. 

Laboratory Exercise
I have used this simulation as the basis for a laboratory exercise, in which students complete a 
partially-written version of the hardwired control unit for the multicycle implementation by writing 
much of the code for calculating the bits of the control word.  Materials from this lab are in the 
Lab/ folder.   The lab has two parts.  In the first, students are given a skeleton file which 
implements only the instruction fetch step on Cycle 0.  They must complete code corresponding to 
the RTL in MulticycleMIPSRTL.pdf.  In part two, they write RTL for two new instructions (taken 
from the MIPS IV ISA): MOVN and MOVZ.  Thought these instructions are actually implemented 
by the complete simulation, they are not included in the RTL.  In lab, students must create RTL for 
these instructions and then write code to implement it.  The folder contains a copy of a lab 
assignment, plus other files needed for the lab.  Note that it is also necessary to create a “crippled” 
version of the simulation (lacking the hardwired control code) as described in the README file.
Test files are provided to make testing student code easy.  The first file (Test1) will exercise part I 
of the lab is described under Building from Sources above.  The second file (Test2) will exercise 
MOVN and MOVZ.  Upon successful execution, it will set registers $1 .. $3 to 2a2a2a2a and leave 
other registers unchanged.  Of course, the Part II program should also be able to correctly execute 
TestProgramMulticycle as well. 
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